
ISSN 1749-3889 (print), 1749-3897 (online)
International Journal of Nonlinear Science

Vol.30(2020) No.1,pp.70-75

Generalized Order (α, β) Based Some Growth Analysis of Composite Analytic
Functions in the Unit Disc

Chinmay Biswas1∗, Tanmay Biswas2
1Department of Mathematics,Nabadwip Vidyasagar College,Nabadwip, Dist.- Nadia, PIN-741302,West Bengal, India

2Rajbari, Rabindrapally, R. N. Tagore Road P.O. Krishnagar, Dist-Nadia, PIN- 741101, West Bengal, India
(Received 4 September 2020, accepted 7 September 2020)

Abstract: In this paper we introduce the idea of generalized order (α, β) and generalized lower order (α, β)
of an analytic function in the unit disc. Hence we study some growth properties relating to the composition
of two analytic function in the unit disc on the basis of generalized order (α, β) and generalized lower order
(α, β) as compared to the growth of their corresponding left and right factors.
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1 Introduction, Definitions and Notations
Let f(z) = ∞

n=0cnz
n be analytic in the unit disc U = {z : |z| < 1} and Mf (r) be the maximum of |f (z)| on |z| = r. In

[4], Sons was define the order ρ (f) and the lower order λ (f) as

ρ(f)
λ(f)

= lim
r→1

sup
inf

log[2] Mf (r)

− log (1− r)
.

Now let L be a class of continuous non-negative on (−∞,+∞) function α such that α(x) = α(x0) ≥ 0 for
x ≤ x0 with α(x) ↑ +∞ as x → +∞. Further we assume that throughout the present paper α, α1, α2, α3, β ∈ L.
Now considering this, we introduce the definition of the generalized order (α, β) and generalized lower order (α, β) of an
analytic function f in the unit disc U which are as follows:

Definition 1 The generalized order (α, β) denoted by ρ(α,β)[f ] and generalized lower order (α, β) denoted by λ(α,β)[f ]
of an analytic function f in the unit disc U are defined as:

ρ(α,β)[f ]
λ(α,β)[f ]

= lim
r→1

sup
inf

α(Mf (r))

β
(

1
1−r

) .

Clearly ρ(log log r,log r)[f ] = ρ (f) and λ(log log r,log r)[f ] = λ (f) .
Now one may give the definitions of generalized hyper order (α, β) and generalized logarithmic order (α, β) of

an analytic function f in the unit disc U in the following way:

Definition 2 The generalized hyper order (α, β) denoted by ρ(α,β)[f ] and generalized hyper lower order (α, β) denoted

by λ
(α,β)

[f ] of an analytic function f in the unit disc U are defined as:

ρ(α,β)[f ]

λ
(α,β)

[f ]
= lim

r→1

sup
inf

α(logMf (r))

β
(

1
1−r

) .
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Definition 3 The generalized logarithmic order (α, β) denoted by ρ
(α,β)
log [f ] and generalized logarithmic lower order

(α, β) denoted by λ
(α,β)
log [f ] of an analytic function f in the unit disc U are defined as:

ρ
(α,β)
log [f ]

λ
(α,β)
log [f ]

= lim
r→1

sup
inf

α(Mf (r))

β
(
log

(
1

1−r

)) .

In this paper we study some growth properties relating to the composition of two analytic function of in the unit
disc on the basis of generalized order (α, β), generalized hyper order (α, β) and generalized logarithmic order (α, β)
as compared to the growth of their corresponding left and right factors. We do not explain the standard definitions and
notations in the theory of entire functions as those are available in [1], [2] and [3].

2 Theorems
In this section we present the main results of the paper.

Theorem 1 Let f and g be any two non-constant analytic functions in U such that 0 < λ(α1,β)[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ(α2,β)[f ] ≤ ρ(α2,β)[f ] < ∞. Then

λ(α1,β)[f ◦ g]
ρ(α2,β)[f ]

≤ lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ λ(α1,β)[f ◦ g]

λ(α2,β)[f ]

≤ lim sup
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ ρ(α1,β)[f ◦ g]

λ(α2,β)[f ]
.

Proof. From the definitions of ρ(α2,β)[f ] and λ(α1,β)[f ◦ g], we have for arbitrary positive ε and for all sufficiently large
values of 1

1−r that

α1(Mf◦g(r)) >
(
λ(α1,β)[f ◦ g]− ε

)
β

(
1

1− r

)
(1)

and

α2(Mf (r)) ≤
(
ρ(α2,β)[f ] + ε

)
β

(
1

1− r

)
. (2)

Now from (1) and (2) it follows for all sufficiently large values of 1
1−r that

α1(Mf◦g(r))

α2(Mf (r))
>

(
λ(α1,β)[f ◦ g]− ε

)
β
(

1
1−r

)
(
ρ(α2,β)[f ] + ε

)
β
(

1
1−r

) .

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
> λ(α1,β)[f ◦ g]

ρ(α2,β)[f ]
. (3)

Again for a sequence of values of 1
1−r tending to infinity,

α1(Mf◦g(r)) ≤
(
λ(α1,β)[f ◦ g] + ε

)
β

(
1

1− r

)
(4)

and for all sufficiently large values of 1
1−r ,

α2(Mf (r)) >
(
λ(α2,β)[f ]− ε

)
β

(
1

1− r

)
. (5)
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Combining (4) and (5) we get for a sequence of values of 1
1−r tending to infinity that

α1(Mf◦g(r))

α2(Mf (r))
≤

(
λ(α1,β)[f ◦ g] + ε

)
β
(

1
1−r

)
(
λ(α2,β)[f ]− ε

)
β
(

1
1−r

) .

Since ε (> 0) is arbitrary it follows that

lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ λ(α1,β)[f ◦ g]

λ(α2,β)[f ]
. (6)

Also for a sequence of values of 1
1−r tending to infinity that

α2(Mf (r)) ≤
(
λ(α2,β)[f ] + ε

)
β

(
1

1− r

)
. (7)

Now from (1) and (7) we obtain for a sequence of values of 1
1−r tending to infinity that

α1(Mf◦g(r))

α2(Mf (r))
≥

(
λ(α1,β)[f ◦ g]− ε

)
β
(

1
1−r

)
(
λ(α2,β)[f ] + ε

)
β
(

1
1−r

) .

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

α1(Mf◦g(r))

α2(Mf (r))
≥ λ(α1,β)[f ◦ g]

λ(α2,β)[f ]
. (8)

Also for all sufficiently large values of 1
1−r ,

α1(Mf◦g(r)) ≤
(
ρ(α1,β)[f ◦ g] + ε

)
β

(
1

1− r

)
. (9)

Now, it follows from (5) and (9) , for all sufficiently large values of 1
1−r that

α1(Mf◦g(r))

α2(Mf (r))
≤

(
ρ(α1,β)[f ◦ g] + ε

)
β
(

1
1−r

)
(
λ(α2,β)[f ]− ε

)
β
(

1
1−r

) .

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ ρ(α1,β)[f ◦ g]

λ(α2,β)[f ]
. (10)

Thus the theorem follows from (3) , (6) , (8) and (10) .
The following theorem can be proved in the line of Theorem 1 and so the proof is omitted.

Theorem 2 Let f and g be any two non-constant analytic functions in U such that 0 < λ(α1,β)[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ(α3,β)[g] ≤ ρ(α3,β)[g] < ∞. Then

λ(α1,β)[f ◦ g]
ρ(α3,β)[g]

≤ lim inf
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤ λ(α1,β)[f ◦ g]

λ(α3,β)[g]

≤ lim sup
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤ ρ(α1,β)[f ◦ g]

λ(α3,β)[g]
.
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Theorem 3 Let f and g be any two non-constant analytic functions in U such that 0 < ρ(α1,β)[f ◦ g] < ∞ and 0 <
ρ(α2,β)[f ] < ∞. Then

lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ ρ(α1,β)[f ◦ g]

ρ(α2,β)[f ]
≤ lim sup

r→1

α1(Mf◦g(r))

α2(Mf (r))
.

Proof. From the definition of ρ(α2,β)[f ], we get for a sequence of values of 1
1−r tending to infinity that

α2(Mf (r)) >
(
ρ(α2,β)[f ]− ε

)
β

(
1

1− r

)
. (11)

Now from (9) and (11) , it follows for a sequence of values of 1
1−r tending to infinity that

α1(Mf◦g(r))

α2(Mf (r))
≤

(
ρ(α1,β)[f ◦ g] + ε

)
β
(

1
1−r

)
(
ρ(α2,β)[f ]− ε

)
β
(

1
1−r

) .

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ ρ(α1,β)[f ◦ g]

ρ(α2,β)[f ]
. (12)

Again for a sequence of values of 1
1−r tending to infinity,

α1(Mf◦g(r)) >
(
ρ(α1,β)[f ◦ g]− ε

)
β

(
1

1− r

)
. (13)

So combining (2) and (13) , we get for a sequence of values of 1
1−r tending to infinity that

α1(Mf◦g(r))

α2(Mf (r))
>

(
ρ(α1,β)[f ◦ g]− ε

)
β
(

1
1−r

)
(
ρ(α2,β)[f ] + ε

)
β
(

1
1−r

) .

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

α1(Mf◦g(r))

α2(Mf (r))
> ρ(α1,β)[f ◦ g]

ρ(α2,β)[f ]
. (14)

Thus the theorem follows from (12) and (14) .
The following theorem can be carried out in the line of Theorem 3 and therefore we omit its proof.

Theorem 4 Let f and g be any two non-constant analytic functions in U such that 0 < ρ(α1,β)[f ◦ g] < ∞ and 0 <
ρ(α3,β)[g] < ∞. Then

lim inf
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤ ρ(α1,β)[f ◦ g]

ρ(α3,β)[g]
≤ lim sup

r→1

α1(Mf◦g(r))

α3(Mg(r))
.

The following theorem is a natural consequence of Theorem 1 and Theorem 3.

Theorem 5 Let f and g be any two non-constant analytic functions in U such that 0 < λ(α1,β)[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ(α2,β)[f ] ≤ ρ(α2,β)[f ] < ∞. Then

lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤ min

{
λ(α1,β)[f ◦ g]
λ(α2,β)[f ]

,
ρ(α1,β)[f ◦ g]
ρ(α2,β)[f ]

}
≤ max

{
λ(α1,β)[f ◦ g]
λ(α2,β)[f ]

,
ρ(α1,β)[f ◦ g]
ρ(α2,β)[f ]

}
≤ lim sup

r→1

α1(Mf◦g(r))

α2(Mf (r))
.
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The proof is omitted.
Analogously one may state the following theorem without its proof.

Theorem 6 Let f and g be any two non-constant analytic functions in U such that 0 < λ(α1,β)[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ(α3,β)[g] ≤ ρ(α3,β)[g] < ∞. Then

lim inf
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤ min

{
λ(α1,β)[f ◦ g]
λ(α3,β)[g]

,
ρ(α1,β)[f ◦ g]
ρ(α3,β)[g]

}
≤ max

{
λ(α1,β)[f ◦ g]
λ(α3,β)[g]

,
ρ(α1,β)[f ◦ g]
ρ(α3,β)[g]

}
≤ lim sup

r→1

α1(Mf◦g(r))

α3(Mg(r))
.

We may now state the following two theorems without proof based on Definition 2.

Theorem 7 Let f and g be any two non-constant analytic functions in U such that 0 < λ
(α1,β)

[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ

(α2,β)
[f ] ≤ ρ(α2,β)[f ] < ∞. Then

λ
(α1,β)

[f ◦ g]
ρ(α2,β)[f ]

≤ lim inf
r→1

α1(log(Mf◦g(r)))

α2(log(Mf (r)))
≤

min

{
λ
(α1,β)

[f ◦ g]

λ
(α2,β)

[f ]
,
ρ(α1,β)[f ◦ g]
ρ(α2,β)[f ]

}
≤

max

{
λ
(α1,β)

[f ◦ g]

λ
(α2,β)

[f ]
,
ρ(α1,β)[f ◦ g]
ρ(α2,β)[f ]

}
≤

lim sup
r→1

α1(log(Mf◦g(r)))

α2(log(Mf (r)))
≤ ρ(α1,β)[f ◦ g]

λ
(α2,β)

[f ]
.

Theorem 8 Let f and g be any two non-constant analytic functions in U such that 0 < λ
(α1,β)

[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
and 0 < λ

(α3,β)
[g] ≤ ρ(α3,β)[g] < ∞. Then

λ
(α1,β)

[f ◦ g]
ρ(α3,β)[g]

≤ lim inf
r→1

α1(log(Mf◦g(r)))

α3(log(Mg(r)))
≤

min

{
λ
(α1,β)

[f ◦ g]

λ
(α3,β)

[g]
,
ρ(α1,β)[f ◦ g]
ρ(α3,β)[g]

}
≤

max

{
λ
(α1,β)

[f ◦ g]

λ
(α3,β)

[g]
,
ρ(α1,β)[f ◦ g]
ρ(α3,β)[g]

}
≤

lim sup
r→1

α1(log(Mf◦g(r)))

α3(log(Mg(r)))
≤ ρ(α1,β)[f ◦ g]

λ
(α3,β)

[g]
.

We may now state the following two theorems without proof based on Definition 3.

Theorem 9 Let f and g be any two non-constant analytic functions in U such that 0 < λ
(α1,β)

[f◦g] ≤ ρ(α1,β)[f◦g] < ∞
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and 0 < λ
(α2,β)

[f ] ≤ ρ(α2,β)[f ] < ∞. Then

λ
(α1,β)
log [f ◦ g]

ρ
(α2,β)
log [f ]

≤ lim inf
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤

min

{
λ
(α1,β)
log [f ◦ g]

λ
(α2,β)
log [f ]

,
ρ
(α1,β)
log [f ◦ g]

ρ
(α2,β)
log [f ]

}
≤

max

{
λ
(α1,β)
log [f ◦ g]

λ
(α2,β)
log [f ]

,
ρ
(α1,β)
log [f ◦ g]

ρ
(α2,β)
log [f ]

}
≤

lim sup
r→1

α1(Mf◦g(r))

α2(Mf (r))
≤

ρ
(α1,β)
log [f ◦ g]

λ
(α2,β)
log [f ]

.

Theorem 10 Let f and g be any two non-constant analytic functions in U such that 0 < λ
(α1,β)

[f ◦g] ≤ ρ(α1,β)[f ◦g] <
∞ and 0 < λ

(α3,β)
[g] ≤ ρ(α3,β)[g] < ∞. Then

λ
(α1,β)
log [f ◦ g]

ρ
(α3,β)
log [g]

≤ lim inf
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤

min

{
λ
(α1,β)
log [f ◦ g]

λ
(α3,β)
log [g]

,
ρ
(α1,β)
log [f ◦ g]

ρ
(α3,β)
log [g]

}
≤

max

{
λ
(α1,β)
log [f ◦ g]

λ
(α3,β)
log [g]

,
ρ
(α1,β)
log [f ◦ g]

ρ
(α3,β)
log [g]

}
≤

lim sup
r→1

α1(Mf◦g(r))

α3(Mg(r))
≤

ρ
(α1,β)
log [f ◦ g]

λ
(α3,β)
log [g]

.
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