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Abstract: In this paper, we use matrix inversion technique to derive three summation formulas for elliptic
hypergeometric series. To my knowledge, two of them are new and the other formula was first discovered by
Warnaar.
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1 Introduction
We will follow the standard notations on basic hypergeometric series (q-series) and elliptic hypergeometric series [5], and
we always assume |q| < 1 and |p| < 1. Define the q-shifted factorial for all integers n by

(a; q)∞ =

∞∏
k=0

(1− aqk), (a; q)n =
(a; q)∞

(aqn; q)∞

and a theta function θ(a; p) by

θ(a; p) = (a; p)∞(p/a; p)∞,

where a ̸= 0. (a; p, q)n which is an elliptic shifted factorial analogue of the q-shifted factorial is defined by

(a; q, p)n =



n−1∏
k=0

θ(aqk; p), n = 1, 2, . . . ,

1, n = 0,(−n−1∏
k=0

θ(aqn+k; p)

)−1

, n = −1,−2, . . . .

We call q and p in (a; q, p)n the base and nome, respectively.
As usual,

(a1, . . . , ak; q)n =(a1; q)n · · · (ak; q)n,

θ(a1, . . . , ak; p) =θ(a1; p) · · · θ(ak; p),

(a1, . . . , ak; q, p)n =(a1; q, p)n · · · (ak; q, p)n.

We use the abbreviation

r+1Vr(a1; a6, . . . , ar+1; q, p) =
∞∑
i=0

θ(a1q
2i; p)

θ(a1; p)

(a1, a6, . . . , ar+1; q, p)i
(q, a1q/a6, . . . , a1q/ar+1; q, p)i

qi. (1.1)
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One must impose that one of the parameters ak is of the form q−n such that the series (1.1) converges.
The following identities appeared in [5] are often used in this paper

θ(a; p) = −aθ(1/a; p) = −aθ(ap; p),

θ(a2; p2) = θ(a,−a; p),

(a2; q2, p2)n = (a,−a; q, p)n,

(a; q, p)2n = (a, aq; q2, p)n,

(a; q, p)n−k =
(a; q, p)n

(q1−n/a; q, p)k

(
− q
a

)k

q(
k
2)−nk.

(1.2)

From a century and a half ago, till the present day, there has been much interest in finding many q-analogues of
classical results in the theory of hypergeometric series. It is natural to find elliptic analogues of those classical results.
This active research field has aroused much interest in the world of mathematics and theoretical physics, see [2–4, 10–16].
Frenkel and Turaev [4] found the following elliptic analogue of Jackson’s 8ϕ7 summation formula in their study of elliptic
6j-symbols

10V9(a; b, c, d, a
2qn+1/bcd, q−n; q, p) =

(aq, aq/bc, aq/bd, aq/cd; q, p)n
(aq/b, aq/c, aq/d, aq/bcd; q, p)n

. (1.3)

Schlosser [12] gave a combinatorial proof of (1.3). By Abel’s method, Chu and Jia [2] proved and discovered some
formulas for elliptic hypergeometric series. Warnaar [14] used matrix inversion and determinant evaluation techniques to
prove several summation and transformation formulas for terminating, balanced, very-well-poised, elliptic hypergeometric
series. Later, he [16] also proved the following summation formulas

12V11(ab; b, bq, b/p, bpq, aq
2/b, a2q2n, q−2n; q2, p2) =

θ(a; p)(−q, aq/b; q, p)n(abq2; q2, p2)n
θ(aq2n; p)(a,−b; q, p)n(a/b; q2, p2)n

q−n, (1.4)

12V11(ab; b,−b, bp,−b/p, aq/b, a2qn+1, q−n; q, p2)d = χ(n is even)
(q, a2q2/b2; q2, p2)n/2(abq; q, p

2)n

(a2q2, b2q; q2, p2)n/2(aq/b; q, p2)n
, (1.5)

where the function χ is defined by

χ(x) =

{
1, if x is true,

0, otherwise.
(1.6)

and

12V11(b;−b, bp,−b/p, c/b, bq/c, qn+1, q−n; q, p2) =
(bq, c/b2; q, p2)n(cq

−n; q2, p2)n
(q/b, c; q, p2)n(cq−n/b2; q2, p2)n

(
−1

b

)n

. (1.7)

2 An inverse pair
Matrix inversion is a powerful technique for derivation identities [1, 6–9]. We say that f and f−1 is an inverse pair if f
and f−1 are two infinite-dimensional, lower-triangular matrices and satisfying

n∑
k=l

f−1
n,kfk,l = δn,l. (2.1)

Matrix inverse technique states that if (2.1) holds, then the following two statements are equivalent

n∑
k=0

fn,kak = bn (2.2)
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and
n∑

k=0

f−1
n,kbk = an. (2.3)

Obviously, in order to prove an identity, we should select suitable explicit inverse pair of infinite-dimensional, lower-
triangular matrices fn,k, f−1

n,k satisfying (2.1) and another known identity. Warnaar [14] used this technique to obtain
some summation and transformation formulas for elliptic hypergeometric series. He also proved the following elliptic
analogue of a results due to Krattenthaler [7]

Lemma 2.1 (Warnaar [14], Lemma 3.2) Let a and bi, ci (i ∈ Z) be indeterminates (such that ci ̸= cj for i ̸= j and
acicj ̸= 1 for i, j ∈ Z). Then

n∑
k=l

f−1
n,kfk,l = δn,l,

where

fn,k =

n−1∏
j=k

θ(ckbj ; p)θ(ack/bj ; p)

n∏
j=k+1

cjθ(ackcj ; p)θ(ck/cj ; p)
(2.4)

and

f−1
n,k =

θ(ckbk, ack/bk; p)

θ(cnbn, acn/bn; p)

n∏
j=k+1

θ(cnbj , acn/bj ; p)

n−1∏
j=k

cjθ(acncj , cn/cj ; p)

. (2.5)

In this paper, we also use the matrix inversion technique to prove some summation formulas for elliptic hypergeometric
series. For (2.4) and (2.5), we set bi = bqi and ci = cqi for all i. Now we compute the products

n−1∏
j=k

θ(ckbj ; p) =
n−1∏
j=k

θ(bcqk+j ; p) =
(bc; q, p)n+k

(bc; q, p)2k

and ∏n−1
j=k θ(ack/bj ; p)∏n
j=k+1 θ(ck/cj ; p)

=

∏n−1
j=k θ(acq

k−j/b; p)∏n
j=k+1 θ(q

k−j ; p)
=

∏n−1
j=k (−acqk−j/b)θ(bqj−k/ac; p)∏n

j=k+1(−qk−j)θ(qj−k; p)

=
(b/ac; q, p)n−k

(q; q, p)n−k

(ac
b

)n−k

=
(b/ac; q, p)n(q

−n; q, p)k
(q; q, p)n(acq1−n/b; q, p)k

(ac
b

)n

qk.

Similarly, we can compute other products appearing in (2.4) and (2.5), after simplification, we obtain the following inverse
pair which is different from that of Warnaar derived from Lemma 2.1 in [14].

Lemma 2.2 Let

fn,k =
(bc, b/ac; q, p)n
(q, ac2q; q, p)n

(a
b

)n

q−(
n
2) (ac2q; q, p)2k(bcq

n, q−n; q, p)k
(bc; q, p)2k(acq1−n/b, ac2qn+1; q, p)k

ckq(
k+1
2 ) (2.6)

and

f−1
n,k = c−nq−(

n
2) θ(bcq

2k; p)(bcqn+1, ac/b; q, p)n
θ(bcq2n; p)(q, ac2qn; q, p)n

(ac2qn, q−n; q, p)k
(bcqn+1, bq1−n/ac; q, p)k

(
bq

a

)k

q(
k
2). (2.7)

Then fn,k and f−1
n,k are an inverse pair.
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Remark. For (2.4) and (2.5), substituting a→ ab, bi → aqi and ci → qri, Warnaar [14] derived the following inverse
pair

fn,k =
θ(abq2rk; p)

θ(ab; p)

(aqn; q, p)rk
(bq1−n; q, p)rk

(ab, q−rn; qr, p)k
(qr, abqrn+r; qr, p)k

qrk

and

f−1
n,k =

(b; q, p)rn
(aq; q, p)rn

θ
(
aq(r+1)k, bq(r−1)k; p

)
θ(a, b; p)

(a, 1/b; q, p)k
(qr, abqr; qr, p)k

(abqrn, q−rn; qr, p)k
(q1−rn/b, aqrn+1; q, p)k

qk.

3 Some summation formulas
In this section, the above inverse pair (2.6) and (2.7) will be repeatedly used to derive some summation formulas for
elliptic hypergeometric series. The first formula derived by us can be stated as follows.

Theorem 3.1 Suppose none of the denominators vanish, then

⌊n
2 ⌋∑

k=0

θ(aq4k; p)(a, b2; q2, p)k(aq
n/b, q−n; q, p)2k

θ(a; p)(q2, aq2/b2; q2, p)k(bq1−n, aqn+1; q, p)2k
q2k

=
(aq/b2, apq/b2; q2, p2)n(aq, b; q, p)n
(aq, apq; q2, p2)n(aq/b2, 1/b; q, p)n

(
−1

b

)n

. (3.1)

Proof. Let the inverse pair fn,k and f−1
n,k be defined by (2.6) and (2.7), respectively. It follows from (1.5) that (2.2) holds

for

an =
(ac

√
cq/

√
b,−ac√cq/

√
b, ac

√
cpq/

√
b; q, p)n

(q,
√
bcq,−

√
bcq,

√
bcq/

√
p; q, p)n

×
(−ac√cq/

√
bp, b/ac; q, p)n(bc; q, p)2n

(−
√
bcpq, a2c3q/b; q, p)n(ac2qn; q, p)n

c−nq−(
n
2)

and

bn = χ(n is enen)
(q, b2/a2c2; q2, p)n/2(bc; q, p)n

(bcq, a2c3q2/b; q2, p)n/2(q; q, p)n

(a
b

)n

q−(
n
2),

where the function χ is defined by (1.6). This implies that the identity (2.3) holds for the above values an and bn, i.e.,

⌊n
2 ⌋∑

k=0

θ(bcq4k; p)(bc, b2/a2c2; q2, p)k(ac
2qn, q−n; q, p)2k

θ(bc; p)(q2, a2q2c3/b; q2, p)k(bcqn+1, bq1−n/ac; q, p)2k
q2k

=
(a2c3q/b, a2c3pq/b; q2, p2)n(bcq, b/ac; q, p)n
(bcq, bcpq; q2, p2)n(a2c3q/b, ac/b; q, p)n

(
−ac
b

)n

.

Here, the identities (1.2) are used to simplify. Making the simultaneous changes bc→ a and b2/a2c2 → b2 yields (3.1).
In theorem 3.1, let p→ 0, we obtain the following corollary

Corollary 3.1 Suppose none of the denominators vanish, then

⌊n
2 ⌋∑

k=0

(1− aq4k)(a, b2; q2)k(aq
n/b, q−n; q)2k

(1− a)(q2, aq2/b2; q2)k(bq1−n, aqn+1; q, p)k
q2k =

(aq/b2; q2)n(aq, b; q)n
(aq; q2)n(aq/b2, 1/b; q)n

(
1

b

)n

. (3.2)

We also discover the following elliptic hypergeometric summation formula.
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Theorem 3.2 Suppose none of the denominators vanish, then

n∑
k=0

θ(q2k+1; p)(a2, bqn/a, q−n; q, p)k(b
2q−k; q2, p)k

θ(q; p)(b2, aq2−n/b, qn+2; q, p)k(a2q−k; q2, p)k

(
−aq
b

)k

=
(−b/a, b√p/a,−b/a√p, ab, q/ab, q2; q, p)n
(−q, q/√p,−q√p, q/a2, b2, b/aq; q, p)n

. (3.3)

Proof. We consider a special case of the inverse pair fn,k and f−1
n,k which are defined by (2.6) and (2.7), respectively. Let

c = q/b in (2.6) and (2.7), then

fn,k =
(b2/aq; q, p)n
(aq3/b2; q, p)n

(a
b

)n

q−(
n
2) (aq3/b2; q, p)2k(q

n+1, q−n; q, p)k
(q; q, p)2k(aq2−n/b2, aqn+3/b2; q, p)k

(q
b

)k

q(
k+1
2 ) (3.4)

and

f−1
n,k =

(
b

q

)n

q−(
n
2) θ(q

2k+1; p)(qn+2, aq/b2; q, p)n(aq
n+2/b2, q−n; q, p)k

θ(q2n+1; p)(q, aqn+2/b2; q, p)n(qn+2, b2q−n/a; q, p)k

(
bq

a

)k

q(
k
2). (3.5)

In view of (1.7), we see that (2.2) holds for

an =
(−aq2/b2, aq2√p/b2,−aq2/b2√p, b2c/aq2, aq3/b2c, qn+1; q, p)n

(−q, q/√p,−√
pq, a2q5/b4c, c, aqn+2/b2; q, p)n

bnq−(
n+1
2 )

and

bn =
(cb4/a2q4; q, p)n(cq

−n; q2, p)n
(c; q, p)n(cb4q−4−n/a2; q2, p)n

(
− b

q2

)n

q−(
n
2).

This implies that the identity (2.3) holds for the above value an and bn, where fn,k and f−1
n,k are defined by (3.4) and (3.5),

respectively, that is,

n∑
k=0

θ(q2k+1; p)(cb4/a2q4, aqn+2/b2, q−n; q, p)k(cq
−k; q2, p)k

θ(q; p)(c, qn+2, b2q−n/a; q, p)k(cb4q−4−k/a2; q2, p)k

(
− b2

aq

)k

=
(−aq2/b2, aq2√p/b2,−aq2/b2√p, b2c/aq2, aq3/b2c, q2; q, p)n

(−q, q/√p,−√
pq, a2q5/b4c, c, aq/b2; q, p)n

.

Making the simultaneous changes cb4/a2q4 → a2 and c→ b2 yields (3.3).
For the theorem 3.2, let p→ 0, we obtain the following corollary

Corollary 3.2 Suppose none of the denominators vanish, then

n∑
k=0

(1− q2k+1)(a2, bqn/a, q−n; q)k(b
2q−k; q2)k

(1− q)(b2, aq2−n/b, qn+2; q)k(a2q−k; q2)k

(
−aq
b

)k

=
(−b/a, ab, q/ab, q2; q)n
(−q, q/a2, b2, b/aq; q)n

(
− b

aq

)n

. (3.6)

The following theorem was first discovered by Warnaar in [16], here we give another proof.

Theorem 3.3 Suppose none of the denominators vanish, then the identity (1.4) holds.

Proof. By the elliptic analogue of Jackson’s 8ϕ7 sum (1.3), we have

n∑
k=0

θ(−bcq2k; p)(−bc, b2q/ac2; q, p)k(ac4q2n, q−2n; q2, p2)k
θ(−bc; p)(q,−ac3/b; q, p)k(b2c2q2n+2, b2q2−2n/ac2; q2, p2)k

qk

=
(−bcq,

√
acq−n/b,−

√
acq−n/b, bq1−2n/ac3; q, p)n

(−ac3/b, bq1−n/
√
ac,−bq1−n/

√
ac, q−2n; q, p)n

. (3.7)
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It follows from (1.2) that

(ac3/b, ac3q/b, ac3/bp, ac3pq/b, b2q2/ac2, b2c2q2; q2, p2)n
(bcq2, bcq, bcpq2, bcq/p, a2c6/b2, ac2/b2; q2, p2)n

=
(−bcq,

√
acq−n/b,−

√
acq−n/b, bq1−2n/ac3; q, p)n

(−ac3/b, bq1−n/
√
ac,−bq1−n/

√
ac, q−2n/bc; q, p)n

. (3.8)

Combining (3.7) and (3.8), we see that

n∑
k=0

θ(−bcq2k; p)(−bc, b2q/ac2; q, p)k(ac4q2n, q−2n; q2, p2)k
θ(−bc; p)(q,−ac3/b; q, p)k(b2c2q2n+2, b2q2−2n/ac2; q2, p2)k

qk

=
(ac3/b, ac3q/b, ac3/bp, ac3pq/b, b2q2/ac2, b2c2q2; q2, p2)n

(bcq2, bcq, bcpq2, bcq/p, a2c6/b2, ac2/b2; q2, p2)n
, (3.9)

which yields that the identity (2.3) holds for

an =
(ac

√
c/
√
b, ac

√
cq/

√
b, ac

√
c/
√
bp; q, p)n

(q,
√
bcq,

√
bcq,

√
bcpq; q, p)n

(ac
√
cpq/

√
b, bq/ac; q, p)n(bc; q, p)2n

(
√
bcq/p, a2c3/b; q, p)n(ac2qn; q, p)n

c−nq−(
n
2)

and

bn =
θ(
√
bc;

√
p)(−

√
bc, b

√
q/ac;

√
q,
√
p)n

θ(
√
bcqn;

√
p)(

√
q,−ac

√
c/
√
b;
√
q,
√
p)n

(
a

b
√
q

)n

q−(
n
2),

where the inverse pair fn,k and f−1
n,k are given by (2.6) and (2.7), respectively. This implies (2.2) holds for the above

values an and bn, i.e.,

n∑
k=0

θ(acq2k; p)(ac2, ac
√
c/
√
b, ac

√
cq/

√
b, ac

√
c/
√
bp, ac

√
cpq/

√
b, bq/ac, bcqn, q−n; q, p)k

θ(ac2; p)(q,
√
bcq,

√
bcq,

√
bcpq,

√
bcq/p, a2c3/b, acq1−n/b, ac2qn+1; q, p)k

qk

=
θ(
√
bc;

√
p)(−√

q, b
√
q/ac;

√
q,
√
p)n(ac

2q; q, p)n

θ(
√
bcqn;

√
p)(

√
bc,−ac

√
c/
√
b;
√
q,
√
p)n(b/ac; q, p)n

.

Making the simultaneous changes bc→ a2, ac
√
c/
√
b→ b, q → q2 and p→ p2 yields (1.4).
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