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Abstract: In this work, the operational Tau method is presented to nd the solutions of the linear and nonlin-
ear Volterra-Fredholm-Hammerstein integral equations (VFHIES) of the second kind. Some simple matrices
in extension of Tau method for the numerical solutions of VFHIEs is applied. In fact, operational Tau method
converts the integral parts of the desired VFHIEs to some operational matrices and constructs the algebraic
equivalent representation of the problems. This representation is a system whose solution gives the compo-
nents of the vector solution. Bernstein multi-scaling functions are applied as the basic polynomial. Finally
some examples are given to show the high accuracy of the method with Bernstein multi-scaling functions
basic.

Keywords: Operational Tau method; Volterra-Fredholm-Hammerstein integral equation; Bernstein multi-
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1 Introduction

In this article Tau method which makes a system is employed to approximate the solution of VFHIEs of the second kind
in the general form:

z z
ut) = f(t)+ 1 tkl(t;S)Gl(s;U(S))dS+ 2 1kz(t;S)Gz(:~7;U(S))dS; t2 [0;1]; (1)
0 0

wheref (t), ki (t; s) andkx(t; s) are given continuous functions ang, » given constants . u(t) is the unknown function

to be determined an@1(s; u(s)); Gz(s; u(s)) are analytic functions of the unknown function u(t). Equatibnhas been

solved by different computational methods which applied various bases for the approximate solution of the €huation

In this section some of them are presented.

Legendre wavelets approximation method for solving nonlinear Volterra-Fredholm integral equations is introdiliced in
Ordokhani [2] applied rationalized Haar functions for solving nonlinear VFHIEs arf@]irthe solutions of nonlinear
Volterra-Hammerstein integral equations using the hybrid of block-pulse and rationalized Haar functions is obtained.
Authors[4] introduced radial basic functions for solving nonlinear VFHIEs. Hendi et al. [5] by using collocation and
Galerkin methods obtained numerical solution for Volterra-Fredholm integral equations. A composite collocation method
is offered for solving nonlinear VFHIEs in [6]. In [7], the nonlinear VFHIESs are solved by using a Computational method
based on Bernstein operational matrices. Yalcinbas [8] has been concerned with the Taylor polynomials of certain non-
linear Volterra-Fredholm integral equations with algebraic nonlinearity. Also, the hybrid functions are applied in different
numerical methods to nd the solutions of equation (1)[9-13].

In the last three decades, spectral methods have been used such as the successful approximation methods. Tau methoc
which is extensively applied for numerical solution of many problems is one of the most important spectral methods.
Recently, authorfl4 17]developed Tau method to nd numerical solution of integro-differential equations. Ghoreishi

in [18] applied Tau method for Volterra Hammerstein integral equations.

This study is an attempt to present the developments of the operational Tau rfi€&had2D] with Bernstein multi-scaling
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(BMS) functions by the use of some simple matrices for the numerical solution of VFHIEs.

This paper is arranged as follows. In section 2, the de nitions of BMS functions are provided and the function approxi-
mation is obtained by using BMS function. In section 3, the operational Tau matrix representation for the VFHIEs as a
system is obtained using an upper triangular Toeplitz matrix. In section 4, some numerical examples are provided. And
the nal section is the concluding part consisting of the obtained results.

2 BMS functions and their properties

Form 1and any positive integée > 1, the BMS functions i, (t);i =0;1;::;;mandn =0;1;::;;k  1are de ned
on the interval0; 1) as[21]

)= Bim (kt n); # t< i,
LALS 0: otherwise;

)

whereB;. (t) are the Bernstein polynomials (B-polynomials) de ned on the inteldl] as follows[22]:

. . |
Bim (1) = rln t'@ 9™ ' that rln = ”(n:nil)'

Itis usually setaBi, (t)=0; ifi< Oori>m: fBiny (t);i =0;1;::; mginHilbert space 2[0; 1], that is a complete
non orthogonal s¢23} In equation(2), mis the order of B-polynomials on the inter{@j 1]; n is the translation argument
and tisthe normalized time. If(t) = [ o.0(t); 2.0(t);:5 m 10(t); mo(t);s ok 2(1); 1k (0555 m 1k 2(t)

; mk 1(t)]7; be a vector function of BMS functions on the inter{@j 1), then with taking integration of the cross
product of two of these vector functions, a matrixkgn + 1)  k(m + 1) dimensional will be resulted which can be
indicated as follow: R
D=<; > = , () T(tdt (3)

This matrix is known by the dual operational matrix dt)([21]).
A function f(t) de ned over|[0; 1] can be expanded in terms of BMS functions as

f(t)’ ? ﬁ:ol i imzo fin n(t)=FT (t);

where (t) is the vector function already de ned afdis ak(m+1) 1vectorgivenbyF = [fo.0;f1.0;5fm 1.0 Tm: 0
nfox nfik 1infm 1k 1 fmk 1]7; and can be obtained §g1]

R
FT=(,f() T()dyD L 4)
We can writef (t) = FT X; where is a non-singular matrix given by(t) = X with a standard basic vector
Xe=[1;tt2;,  ;tkm*k DT We can also approximate the functik(t; s); as follows:

kts)'  T(OK (s);
where Kis ak(m +1) k(m +1) matrix and can be calculated as

2 3T
Kgo

%
K 1;0

k=8 = 4. (5)

andf K. g?lg n io arek(m+1) 1linorderto calculate them rsthk(t;s) is approximated in terms &f ., (s)gi”l;g ;niO
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ask(t;s) ' T(t) (s); where (t) =[ o0(t); vo(t);: mo(t); "'; ok 1(1); 1k 1(t) 25 omk 1(H)]7; and by using
Eq:(4); the elements of vector(t) can be obtained far = 0; 1;::;;m andn = 0;1;::;;k 1. Now, all functions are

approximated i, (t)g'%y . nEO interms of ;. (t) fori =0;1;::;;m; n=0;1;:5k 1as

in (1) ? E:ol Pm i 0 Kin in (1) = Ki-;rn (t); (6)

1

where usinggq:(4), fKin gi”;;g :n=o Can be obtained fror&q:(6). k(t,s) can be expressed as:

k(ts)' TMK (s)= X{ TK Xg;

where =[ ]ik;jm:o( K Disa non-singular matrix given by(t) = X, with a standard basic vectd, = [1;t;t2;::;
tkm+ (k- DIT - [fwe takel€ = TK , we can write
Le) T Pkm+(k l)Pkm+(k 1) i
k(t;s)' X{KXs= 5 i =0 i t's: @)

3 The outline of the method for integral equations

In this section we derive formulas for numerical solvability of integral equat{@hsased on BMS functions of the
operational Tau method.
Let the analytic function&4(t; u(t)) andG,(t;u(t)) be de ned on[0; T] R, thus itis be approximated as:

P P
GuEUM) ' hy SO Gatu() 'y p(®UP():

this relation shows that the use of Tau method requiresufia} to be written as the product of a matrix and a vector. The
following result is concerned with the approximation of the functions:

P
Lemmal Letu(t) " o Mo Uin in(t)=uT (t)=uT X, be a polynomial with
km+(k 1)

u =[Uo;o;ul;o;:::;um;o,::"uOk Uik 1iUmk 1] =0 il =0 andX; = [1;t;t%;;tkm (k- DT+ then
for any natural numbep 2 N, we have
uP(t)' ut BP 1Xy;

where B is an upper triangular Toeplitz matrix having the following structure

2 3
u o u’ ¢ u’ u’ km+(k 1)
0 u" o u" 4 U’ km(k 2)
B = 0 0 ul o ul kma(k 3 -
0 0 0 ut o

with § =[ o5 15 2570 kmek 3] 4 =0;L  ;km+(k 1)

Proof. The validity of the Lemma for p=1is obvious. Lef(t) ' (uT X;) (uT X{)=uT ( Xy (uT Xy)). Now,
itisshownthaX; (u" X;)= BXy:

If U =[Uo;0;U1;0;::5 Um0 15 Uk 13Usk 1555 Umk 1]™ = [Uoj Us; Uz, i3 Ukm+(k 1y]T ; We can set

p P
X (Ut Xo)=X¢ ( zmoJr(k Y l:m0+(k Yu rs t°)

:[P km+(k 1) P km+(k 1)

st+itkm+(k 1),
s=0 r=0 Ur st ]

and
th:[Pkmﬂk 1)B tl]km+(k 1) [Pkm+(k l)Pkm+(k 1)

km+(k 1),
i =0 i=0 Ur 1 tj]
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concerningB; =0; fori>j , it follows that

P P
BX, = km+(k 1) © km+(k 1)

i+jjkm+(k 1),
IR
j=0 r=0 ron t ]i:O !

which states the Lemma hold for p=So we assume the validity of the proposition for k and tranditité are as follows:
ut () = uk(u(t) T (uT BY IXy) (U X =ul BR H(Xy)  (uT Xy)

=u’ Bk l(BXt): u' kat:

|
Following the structure of matrix B in Lemnig we can write
3
u' e1 u' () u' e3 u' €k (m)+ k
0 u' e1 u' ey u' Ek(m)+( k 1)
B = 0 0 ul e u' exmy(k 2 :

0 0 0 ut e;
where ; 1 = €j;€e and are unit and non-singular matrices respectivelyiand. ; 2;::;; k(m + 1) .

If we takee = Tu with e = [B0.0;81.0; 25 Bm 0, 5 Bok 1,81k 1;:0;8mk 1]"; therefore the matrix B can be repre-
sented as an upper triangular Toeplitz form

2 3
800 810 820 Bk 1
0 8.0 B10 8m 1k 1
B = 0 0 & Bm 2k 1
0 0 0 80:0

The operational Tau representation of the integration terms for a class of VFHIEs is presented here in Th&otdsiisg
Theoremsl and2 the operational Tau matrix for Volterra and Fredholm integration terms of the VFHIEs is obtained. The
following theorems which its proof is based mainly on Leninsagiven.

Theorem 2 Let that the analytic functions(s) andk;(t; s) can be expressed as :
P P
u(s) ' ﬁ:ol Plo Uin in ()= UuT (s)=uT Xsg;
P P .
ki(t;s) ' T(t)Kl (s) = XtT TK]_ Xs = ik:n’g)+( kD jkr:no+( k1) Rl(i;j )SItJ ;

ki k 1
AL

whereu = [Ug:0; U1:0; 55 Um: 0 S5 Uosk 13Uk 1555 Umk 1)7: =1 i =0 is a non-singular matrix anX ¢ =

[1;s; % skm*(k DIT then we have
R T 1
o ki(t;s)uP(s)ds' u' BP *MXy;

whereM  is in the following form

2 3
0 k1(o;o) P((1(0;1) + %'f( 1(1;0) l21(0;2) + %k 1a;1 T %k 1(2;0)
1 1 1
0 0 5K 1000 sK10:0 t 3K102:0)
0 0 0 K100 :
1
0 0 0 mkl(o;m
0 0 0 0

and B has been given in Lemrha
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Proof. Using Lemma4, we have:
uP(s)' u' BP Xg;

alsoky(t;s)uP(s) ' uT BP ky(t;s);sku(t;s); sk Dk, (t;s)]": We can write:

1 P ki k 1 P ki k 1 i i
Ky (t;s)s" _rr(1)+( ) Jm0+( )ltl(i;j )t] gn+i:

the integration term can be written as:
(; 1(t’ )up( ) ( ) I T P 1[ 0 1(t S)Sn d(s)]k (k1

P P .
. 1 km+(k 1) km+(k 1) tn+ i+l akm +( k 1)
=u’ BP Y i=0 j=0 lQl(lj )t n+i+1 In=0

On the other hand, we have

Piumsk P kmsck 1) ne i km+(k 1) )
10 {20 K e = [kl kq(n)X;

such thak, (n) is a matrix having the following entrise

f<1(i;j)(n)= Ikl(m i1 n()); ::>nn4+r :
Therefore, we can write
Rékl(t;S)up(s)d(s) ©ouT BP Y[ JEm D )X Ty D
= uT B Mt IS Pk X
= u' BP M:Xg:

]
Theorem 3 Let that the analytic functions u(s) akd(t; s) can be expressed as:
P P
us)'  fey o U (M =uT (9= uT X
P P
ka(t;s)' T(s)Kz ()= XTI TK, X;= ~k"5+(k Y kao+(k 1)kZ(i;i)tSJ

whereu = [Ugo0;U1:0; 55 Umo; 5 Ugk 13Uk 155 Umk 17 = [ i ]:fjm:t,(k Yis a non-singular matrix and

Xs =[1;s;8%; ::;skm+(k DT then we have
Ry T 1
o Ka(t;s)uP(s)ds' u' BP *MaXy;

such thatM , is a matrix having the following form

2 3
P Kk 2 Kooy Pormy(k 1) Kogmpe x ni)
§ j+1 j=0 j+1 z
P Ky ) Kooy, P iemy(k 1) Kageimp 1)

j+k(m+1) j=0 j+k(m+1)

and B has been given in Lemrha
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Proof. According to Lemmél:
uP(s)' u' BP X
also
Ko(t;s)UP(s) ' uT BP [ko(t;s);sko(t;s); i skM Kk Dko(t;s)]™:
We can write: b b
ka(ts)st = (R DT OO D kgt

the integration term can be written as:

Rol ka(t; s)uP(s)d(s) uT BP 1[ . Ka(t: S)S”d(s)]km+(k 1)

P P
_ T 1 km+(k 1) km+(k 1) km +( k 1)
= u Bp [ i=0 j=0 I22(|J)tlr'l+]+l]
On the other hand, we will have
Pkm+(k )P mk 1 km+(k 1)
[ i=o j=0 Ko )t|m+1+1 m=0 = M2X¢;
such thaM , having following form:
P P 3
k(m)+( k 1) Koy k(m)+(k 1) Kzgemy k 134)
j+1 j=0 j+1
Pmyk 1 Kooy P iemy+(k 1) Koot x 01
j=0 j+k(m+1) j=0 j+k(m+1)

3.1 Numerical Tau approximation of the FVHIES

Here the previous results are applied to construct Tau approximate soluiibn &¥ithout loss of generality and owing
to the large variety of kernels and nonlinearities that occur in practice, the assumption is based on the fact that in (1), the
analytic function can be expanded as

P P
Gi(s;u(s) ' poo p(IUP(S);  Ga(siu(s)) ' pop p(S)UP(S):

Tau approximation ofl) is considered as follows:
— P n p P n Rl . p .
ut)=fM+ 1 o o k1(t ) p(SUP(S)(S)+ 2 o o Ka(tis) p(S)UP(s)d(s);

wheret 2 [0; 1]; in which it can be written as

Ry R; P, R
ut)= f®+ 1 gki(t;s) o(s)d(s)+ 2 4 Ka(t;s) o(S)A(S)+ 1 poy g Ka(t;s) p(s)uP(s)d(s)

P

R
+ 2 ha g ke(ts) p(9)UP(9)d(s);  t2 [0

R R _ _
Let F(t) = f(t) + o ki(ts) o(s)d(s) + 01 kKa(t;s) o(s)d(s) and us sekpi(t;s) = ki(t;s) p(s), Kpa(t;s) =
Ko(t;8) p(s), where (s), p(s);(p = 1;::;n) are continuous functions. Using the given notations in Theorems
and2 the above equation can be transformed into the following matrix form:

P P
ut Xe=FT Xe+ 1 g ul BP "MpXe+ 2 o uT BP 'MpoXy; (8)
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where forp = 1; :::; n, matrix formM p; is:

2 —_ — Kp1 — K, K 3
0 Kpl(o;o) Kpl(o;l) + p 2(1;0) KP1(O;2) + p12(1;1) + pl:;z;o)
0 0 K7P12(0;0) K7P12(0:1 + Kf“él;o)
0o 0 0 Loipn :
VI 0 T
0 0 0 0

and forp = 1;:::; n, matrix formM, is:

p e = % 3

k(m)+( k 1) Kp2gy) k(m)+( k1) Kp2km)e k1)
i=0 T+ j=0 T+1

Pimy(k 1 Kozgy) Pmyr(k 1 Kozgimpe ki)
j=0 j+ k(m+1) j=0 j+k(m+1)

Equation(8) can be written as:
P P
ut X=FT X+ 1 pyuT BP Mpr 1 Xyt 5 g uT BP IMp Xy

and so

p P
ut ()=FT ()+ qu’ 3:1 BP Mpr ! ()t oul 3:1 BP *Mp2  * (1):

Therefore, we have
P P
ut = FT+ qul L BP *Mp T+ uT L BP M T 9)

According to the structure of the matricesMp1; M2 and upper triangular Toeplitz matrix B with the same diagonal
entries, a system ¢in(k+1)) (m(k +1)) equations is obtained whose solution gives the unknown components of the
vectoru = [Ug:o; U105 Um: 0; =5 Uok 15Utk 155 Umk 1]

Remark 4 For G1(s;u(s)) = u'(s); Gao(s;u(s)) = ul (s), systen(8) can be represented as a simple form

ut = fT + 1UT Bi 1M1 1+ 2UT Bi 1M2 1. (10)

Here it is shown how to compute the matri@&'s *; B/ 1; which are required in the construction of systgifl). Through
simple calculations, the upper triangular Toeplitz maBix ! is as follows:

(800) Co(ﬂo;o)ilzﬂo;l c1(8o;0) *(@o;1)° + c2(B00)' ez

0 (800)' * co(@00)' B0
0 0 (Bo0)' * ;
0 0 (80.0) *

wherecy; €1 C; ::: are constant. Multiplying both sides ¢f0) by , we get

u = f7 + ]_UT B 1M1+ ]_UT B! le:
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Letusintroduce = Tuandf= Tf,withe=[800;81.0;: Bmo0; B0k 1,81k 1.5 8mk 1]’ and
= [0, 8.0 & ook 18k 1058k 1]7; then the above equation take the form of

" =€+ .@a'B' 'M;+ ,8"Bl My: (11)

The following algorithm summarizes the proposed Tau method :

Algorithm1. The construction of Tau approximation system
Step1. Choose m, k, compute the non-singular coef cient matrixas (t) = [1 ;t;t?;::;
tkm +( k 1)]T:

P, ,P
Step2. Comput&®= R Tf byusingof (t)asf(t)' K& Mo fin m®)=fT (b);

wheref T = (" f(t) T(t)d)D ™.

Step 3. Compute the matrices BX fork =1;::;;i  1(j 1) andMy andM, from Lemmal
and Theorem4 and2.

Step 4. Take =[80.0;81.0;:;8m 0,80k 1,81k 1;::Bmk 1] and obtain the entries of the
vector solutiore from the system of equaticm’ = @' B! M, + " Bl 1M, + € .

Step 5. Using forward substitution, compgo; 81.0; :::; @m: 0; Bok 1;81k 1, Bmk 1 from
step4,andsat=( T) ‘e;thenun(t)= uT ():

4 lllustrative examples

In this section, presented method of this article is applied to solve seven examples. The computations associated with the
examples were performed using Mathematica.

Example 5 Consider the following VFHIEL]
tG t4 ’ 5 Z t ) VA 1
uM)= 5t 3 Utz 47 . (t  x)us(x)d(x) + . (t+ xju(x)d(x);t 2 [0; 1];

with the exact solutionu(t) = t> 2.The present method is used for this example. For computational details and
numerical implementation of the proposed Tau algorithm, we take2 ; k = 1, so the following simple matrices in the
case of BMS functions are obtained :

2, 3
110

2 3 2 3
1 2 1 00 1 11 g
=40 2 25: M;=40 0 05: M,=83 2 :
0 0 1 0 0O 0

Bl
Wl

and using the given algorithm, the nonlinear system of equations is obtained

5.1 1 1 _n.

Z;‘ 5800 3801 7802 =0;

- Bo;ol“‘ 5801 3B02=0;
1 595;0 + 8p2 =0;

with the exact solutionBg.o = 2,801 = 0;8p.2 = 1. Thus we have = [ 2;0;1]": Using the computation =
(" la, the approximate solution are to beag (t) = u' (t) thatitisun (t) = t> 2; which is the exact solution of
the integral equation.
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Example 6 Consider the nonlinear VFHIE of the fof@b]
——e® Sy(s)d(s);
o 3

1

u(t)= e**s + t 2 [0;1];

with the exact solutiomi(t) = €. You can see in Tablg, the absolute errors of some points[6f1] for the present
method and comparing the obtaining results of the present method with m§23p2i8] shows that this method has high
accuracy than methodg5; 26].

Tablel. The numerical results of Examfe

t Present Method of[25] Present Method of[25] | Method 0f{26]
method method

m=3;k=2 | M=3;N=4 |m=4;k=4 | M =4;N =4 | form =128

0.0 0 026 10 ° 0 0:34 10 ° 04 107

02| 024 10° 0:14 10°7? 023 10 ° 022 10 4 02 104

04| 062 103 0:11 1072 0:66 10 ° 054 10 4 03 104

06| 0:11 10°? 0:16 10 ? 0:32 10° 087 10 4 05 104

08| 059 10°3 0:54 10 ? 071 10 ° 0:93 10 4 03 10 %

Example 7 Consider the VFHIE3]
z t

u(t) =1+ sin?(t) 3sin(t  s)u?(s)d(s); t2[0;1];

0

where the exact solution is u(t)=cos(t). In this example Tau method is used with BMS functitms#&;k = 2). The
exact solution and computational results of the present method and m¢8hadsis shown in Tabl&. Figure1(a;b).

Example 8 Consider the nonlinear VFHIE given [27] by
V4 1

u(t) = e*t e 2Sud(s)d(s); t 2 [0; 1];

where the exact solution is(t) = €'. Tau method is applied and this example is solved wit 3;4;k = 3. The
comparison between approximate solutions of the present method and Haar wavelets[@gttoagther with the exact
solution is shown in Tabl2. As it is appeared in this table, Tau method with BMS functions has high accuracy compared
with the Haar waveletf27]. Figure 2(c; d).

Table2. The approximate and the exact solutions of Exardple

t Present method Method of[27] | Exact solution
m=3;k=3 m=4;k=3 fork =32
0:1 1:105171260 105170921 | 1:107217811 | 1:105170918
0:2 1:221404329 121402760 | 1:218102916 | 1:221402757
0:3 1:349858467 1349858770 | 1:341165462 | 1:349858806
0:4 1:491833532 491824775 | 1:474918603 | 1:491824696
0:5 1:648719077 48721182 | 1:667402633 | 1:648721268
0:6 1:822128794 1822119061 | 1:833861053 | 1:822118797
0:7 2:013740095 D13753128 | 2:016679830 | 2:013752703
0:8 2:225553484 225540930 | 2:217456630 | 2:225540923
0:9 2:459610217 259603124 | 2:437978177 | 2:459603104
Cpu time 4.84 8:55
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Example 9 Consider the nonlinear VFHIE given [28] by
Z,

ut)= 3 1+e" M)+ sin(t)+  tcoys)e"®d(s); t2[0;1];
0

where the exact solution igt) = sin(t). Example5, were solved if28] by a method based on Taylor series expansion
approach. The reported results of the proposed Tau method and the njg&8jace shown in Tabld.

Table3: The computational results and the exact solutions of Exafiple

t Exact solution| Present method Method of[3] | Method of[24]

m=2;k=2 |m=8;k=2 m =16

0:0 1 1:0000 1:0000 1:0000

0:2 0:9801 0:9801 0:9801 0:9800

04 0:9211 0:9211 0:9211 0:9210

0:6 0:8253 0:8253 0:8253 0:8255

0:8 0:6967 0:6967 0:6967 0:6969

Cpu time 1:25
a b
1.0 0.0010
081 0.0008 -
06 0.0006 -
04+ 0.0004 -
02 T ::r::)jrlnua‘lisnml ution 0.0002 -
00 02 04 06 08 10 o o ‘

Figure 1: (a)The exact and the approximate solution of Exangdler m = 2; k = 2; (b) The absolute difference error of
Example3 for variant value of m,k;

201

151 q
L — exact solution
approximate solution

" S — — | 1
02 04 06 08 10 M 02 04 06 08 10

Figure 2; (c)The exact and the approximate solution of Exandier m = 3;k = 3; (d) The absolute difference error of
Example for variant value of m,k;
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Table4: The absolute errors of Exampie

t Exact Present Method of Present Method of
solution method [28] method [28]
m=3;k=1 N =4 m=5;k=1 N =9
0 0 0 0 0 0

0:2 0:19866 0:19866 0:19866 0:19866 0:19866
0:4 0:38941 0:38938 0:38933 0:38941 0:38941
0:6 0:56460 0:56422 0:56400 0:56460 0:56464
0:8 0:71535 0:71520 0:71466 0:71535 0:71735
Cputime 1.57 2:45

Example 10 Consider the nonlinear VFHIE29]

z 1
u(t) = é+ 2tse VO d(s):  t 2 [0;1];
0

where the exact solution ts Table5 represents the maximal errors of the present method together with the errors of the
method29] for Example6. Figure 3.

Table5: The numerical results of Exampte
Present method Method of[29]
k | Maximal error | N | Maximal error
165 107 |16] 128 10°
151 108
1:26 10° | 32| 248 107
7.03 10 12
754 10 ™ | 64| 504 10°8

ANwownN| k3
oo uo|m

Example 11 Consider the following VFHIE30]

3 Pa Z,
u) =1+ t+(@1 é|n(3)+ - 32+ 2t%sIn(u(s))d(s); t2[0;1];
0

with the exact solution i + t + t2. The comparison among Tau solutions in some poinf8;df form = 2;k = 2 and

the approximate solutions of meth[@D]for N = 6 are shown in Tablé. As you see in this table, the present method with
BMS functions has advantageous solutions over md@dAlso in this table we show Tau solutions far=2;k = 7.

It is observed that by increasing the valuenofk the resulted accuracy increased as well.

Table6. The approximate and the exact solutions for Exaniple

t | Present method Present method Method off30] | Exact solution
m=2;k=2 m=2;k=7 N=6

0:0 1:000000 1:000000 1:000000 1

0:1 1:110572 1:109999 111
0:2 1:240464 1:239999 1:238432 1:24
0:3 1:388941 1:389999 1:39
0:4 1:558908 1:559988 1:553726 1:56
0:5 1:751675 1:749977 1:75
0:6 1:953658 1:959960 1:945884 1:96
0:7 2:176550 2:189936 2:19
0:8 2:423034 2:439904 2:414905 2:44
0:9 2:696922 2:709863 2:71
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1 1 1
0.2 0.4 0.6 0.8 1.0
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Figure 3: The comparison between absolute errors of ExarBgter some k and m.

IINS email for contributioneditor@nonlinearscience.org.uk



Y. Ordokhani, S. Moosavi: Numerical Solution of Volterra-Fredholm-Hammerstein Integral Equations by the Tau Method 191

5 Conclusion

The numerical solution of VFHIEs with an extension of Tau method based on BMS functions is presented in this paper.
Using Tau method, it is given a structurally simple algorithm that is conventionally applicable to the numerical solution
of VFHIEs. Some useful results are obtained in this method. The most important ones are: the simplicity of the method,
reducing the computations using Tau method and having low run time of its algorithm. Our numerical results of examples
show that Tau method with BMS functions basic can be approximated solutions with high accuracy. Particular with
increasing the value of m,k the resulted accuracy increased as well.
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