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Abstract: In this work, the operational Tau method is presented to �nd the solutions of the linear and nonlin-
ear Volterra-Fredholm-Hammerstein integral equations (VFHIEs) of the second kind. Some simple matrices
in extension of Tau method for the numerical solutions of VFHIEs is applied. In fact, operational Tau method
converts the integral parts of the desired VFHIEs to some operational matrices and constructs the algebraic
equivalent representation of the problems. This representation is a system whose solution gives the compo-
nents of the vector solution. Bernstein multi-scaling functions are applied as the basic polynomial. Finally
some examples are given to show the high accuracy of the method with Bernstein multi-scaling functions
basic.

Keywords: Operational Tau method; Volterra-Fredholm-Hammerstein integral equation; Bernstein multi-
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1 Introduction

In this article Tau method which makes a system is employed to approximate the solution of VFHIEs of the second kind
in the general form:

u(t) = f (t) + � 1

Z t

0
k1(t; s)G1(s; u(s))ds + � 2

Z 1

0
k2(t; s)G2(s; u(s))ds; t 2 [0; 1]; (1)

wheref (t), k1(t; s) andk2(t; s) are given continuous functions and� 1, � 2 given constants . u(t) is the unknown function
to be determined andG1(s; u(s)) ; G2(s; u(s)) are analytic functions of the unknown function u(t). Equation(1) has been
solved by different computational methods which applied various bases for the approximate solution of the equation(1).
In this section some of them are presented.
Legendre wavelets approximation method for solving nonlinear Volterra-Fredholm integral equations is introduced in[1].
Ordokhani [2] applied rationalized Haar functions for solving nonlinear VFHIEs and in[3], the solutions of nonlinear
Volterra-Hammerstein integral equations using the hybrid of block-pulse and rationalized Haar functions is obtained.
Authors[4] introduced radial basic functions for solving nonlinear VFHIEs. Hendi et al. [5] by using collocation and
Galerkin methods obtained numerical solution for Volterra-Fredholm integral equations. A composite collocation method
is offered for solving nonlinear VFHIEs in [6]. In [7], the nonlinear VFHIEs are solved by using a Computational method
based on Bernstein operational matrices. Yalcinbas [8] has been concerned with the Taylor polynomials of certain non-
linear Volterra-Fredholm integral equations with algebraic nonlinearity. Also, the hybrid functions are applied in different
numerical methods to �nd the solutions of equation (1)[9-13].
In the last three decades, spectral methods have been used such as the successful approximation methods. Tau method
which is extensively applied for numerical solution of many problems is one of the most important spectral methods.
Recently, authors[14 � 17] developed Tau method to �nd numerical solution of integro-differential equations. Ghoreishi
in [18]applied Tau method for Volterra Hammerstein integral equations.
This study is an attempt to present the developments of the operational Tau method[19� 20]with Bernstein multi-scaling
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(BMS) functions by the use of some simple matrices for the numerical solution of VFHIEs.
This paper is arranged as follows. In section 2, the de�nitions of BMS functions are provided and the function approxi-
mation is obtained by using BMS function. In section 3, the operational Tau matrix representation for the VFHIEs as a
system is obtained using an upper triangular Toeplitz matrix. In section 4, some numerical examples are provided. And
the �nal section is the concluding part consisting of the obtained results.

2 BMS functions and their properties

For m � 1 and any positive integerk > 1, the BMS functions i;n (t); i = 0 ; 1; :::; m andn = 0 ; 1; :::; k � 1 are de�ned
on the interval[0; 1) as[21]

 i;n (t) =
�

B i;m (kt � n); n
k � t < n +1

k ;
0; otherwise;

(2)

whereB i;m (t) are the Bernstein polynomials (B-polynomials) de�ned on the interval[0; 1] as follows[22]:

B i;m (t) =
�

m
i

�
t i (1 � t)m � i ; that

�
m
i

�
=

m!
i !(m � i )!

:

It is usually set asB i;m (t) = 0 ; if i < 0 or i > m: f B i;m (t); i = 0 ; 1; :::; mg in Hilbert spaceL 2[0; 1], that is a complete
non orthogonal set[23]: In equation(2), m is the order of B-polynomials on the interval[0; 1]; n is the translation argument
and t is the normalized time. If� (t) = [  0;0(t);  1;0(t); :::;  m � 1;0(t);  m; 0(t); :::;  0;k � 1(t);  1;k � 1(t); :::;  m � 1;k � 1(t)
;  m;k � 1(t)]T ; be a vector function of BMS functions on the interval[0; 1), then with taking integration of the cross
product of two of these vector functions, a matrix ofk(m + 1) � k(m + 1) dimensional will be resulted which can be
indicated as follow:

D = < �; � > =
R1

0 � (t)� T (t)dt: (3)

This matrix is known by the dual operational matrix of� (t)([21]).
A function f(t) de�ned over[0; 1] can be expanded in terms of BMS functions as

f (t) '
P k � 1

n =0

P m
i =0 f i;n  i;n (t) = F T � (t);

where� (t) is the vector function already de�ned andF is ak(m+1) � 1 vector given byF = [ f 0;0; f 1;0; :::; f m � 1;0; f m; 0;
:::; f 0;k � 1; f 1;k � 1; :::; f m � 1;k � 1; f m;k � 1]T ; and can be obtained by[21]

F T = (
R1

0 f (t)� T (t)dt)D � 1: (4)

We can writef (t) = F T � X t ; where� is a non-singular matrix given by� (t) = � X t with a standard basic vector
X t = [1 ; t; t 2; � � � ; tkm +( k � 1) ]T : We can also approximate the functionk(t; s); as follows:

k(t; s) ' � T (t)K� (s);

where K is ak(m + 1) � k(m + 1) matrix and can be calculated as

K =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

K T
0;0

K T
1;0
...

K T
m; 0
...

K T
0;k � 1

K T
1;k � 1

...
K T

m;k � 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

T

; (5)

andf K i;n gm;k � 1
i =0 ;n =0 arek(m+1) � 1 in order to calculate them �rstly,k(t; s) is approximated in terms off  i;n (s)gm;k � 1

i =0 ;n =0
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ask(t; s) ' � T (t)� (s); where� (t) = [ � 0;0(t); � 1;0(t); :::; � m; 0(t); :::; � 0;k � 1(t); � 1;k � 1(t); :::; � m;k � 1(t)]T ; and by using
Eq:(4); the elements of vector� (t) can be obtained fori = 0 ; 1; :::; m andn = 0 ; 1; :::; k � 1. Now, all functions are
approximatedf � i;n (t)gm;k � 1

i =0 ;n =0 in terms of i;n (t) for i = 0 ; 1; :::; m; n = 0 ; 1; :::; k � 1 as

� i;n (t) '
P k � 1

n =0

P m
i =0 ki;n  i;n (t) = K T

i;n � (t); (6)

where usingEq:(4), f K i;n gm;k � 1
i =0 ;n =0 can be obtained fromEq:(6). k(t,s) can be expressed as:

k(t; s) ' � T (t)K� (s) = X T
t � T K � X s;

where� = [� i;j ]km +( k � 1)
i;j =0 is a non-singular matrix given by� (t) = � X t with a standard basic vectorX t = [1 ; t; t 2; :::;

tkm +( k � 1) ]T : If we take eK = � T K � , we can write

k(t; s) ' X T
t

eKX s =
P km +( k � 1)

i =0

P km +( k � 1)
j =0

eK i;j t i sj : (7)

3 The outline of the method for integral equations

In this section we derive formulas for numerical solvability of integral equations(1) based on BMS functions of the
operational Tau method.
Let the analytic functionsG1(t; u(t)) andG2(t; u(t)) be de�ned on[0; T] � R , thus it is be approximated as:

G1(t; u(t)) '
P n

p=0 
 p(t)up(t); G2(t; u(t)) '
P n

p=0 � p(t)up(t);

this relation shows that the use of Tau method requires thatup(t) to be written as the product of a matrix and a vector. The
following result is concerned with the approximation of the functions:

Lemma 1 Letu(t) '
P k � 1

n =0

P m
i =0 ui;n  i;n (t) = uT � (t) = uT � X t be a polynomial with

u = [ u0;0; u1;0; :::; um; 0; :::; u0;k � 1; u1;k � 1; :::; um;k � 1]T ; � = [� i;j ]km +( k � 1)
i;j =0 andX t = [1 ; t; t 2; :::; tkm +( k � 1) ]T ; then

for any natural numberp 2 N , we have

up(t) ' uT � B p� 1X t ;

where B is an upper triangular Toeplitz matrix having the following structure

B =

2

6
6
6
6
6
4

uT � 0 uT � 1 uT � 2 � � � uT � km +( k � 1)

0 uT � 0 uT � 1 � � � uT � km +( k � 2)

0 0 uT � 0 � � � uT � km +( k � 3)
...

...
...

...
...

0 0 0 � � � uT � 0

3

7
7
7
7
7
5

;

with � j = [� 0;j ; � 1;j ; � 2;j :::; � km +( k � 1) ;j ]T ,j = 0 ; 1; � � � ; km + ( k � 1).

Proof. The validity of the Lemma for p=1 is obvious. Letu2(t) ' (uT � X t ) � (uT � X t ) = uT �( X t � (uT � X t )) . Now,
it is shown thatX t � (uT � X t ) = BX t :

If u = [ u0;0; u1;0; :::; um; 0; :::; u0;k � 1; u1;k � 1; :::; um;k � 1]T = [ u0; u1; u2; :::; ukm +( k � 1) ]T ; we can set

X t � (uT � X t ) = X t � (
P km +( k � 1)

s=0

P km +( k � 1)
r =0 ur � r;s ts)

= [
P km +( k � 1)

s=0

P km +( k � 1)
r =0 ur � r;s ts+ i ]km +( k � 1)

i =0 ;

and
BX t = [

P km +( k � 1)
j =0 B ij t j ]km +( k � 1)

i =0 = [
P km +( k � 1)

j =0

P km +( k � 1)
r =0 ur � r;j � i t j ]km +( k � 1)

i =0 ;
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concerningB ij = 0 ; for i > j , it follows that

BX t = [
P km +( k � 1)

j =0

P km +( k � 1)
r =0 ur � r;j t j + i ]km +( k � 1)

i =0 ;

which states the Lemma hold for p=2. So we assume the validity of the proposition for k and transit tok+1 are as follows:

uk+1 (t) = uk (t)u(t) ' (uT � B k � 1X t ) � (uT � X t ) = uT � B k � 1(X t ) � (uT � X t ))

= uT � B k � 1(BX t ) = uT � B k X t :

Following the structure of matrix B in Lemma1, we can write

B =

2

6
6
6
6
6
4

uT � e1 uT � e2 uT � e3 � � � uT � ek (m )+ k

0 uT � e1 uT � e2 � � � uT � ek (m )+( k � 1)

0 0 uT � e1 � � � uT � ek (m )+( k � 2)
...

...
...

...
...

0 0 0 � � � uT � e1

3

7
7
7
7
7
5

;

where� i � 1 = � ei ; ei and� are unit and non-singular matrices respectively andi = 1 ; 2; :::; k(m + 1) .
If we takeeu = � T u with eu = [ eu0;0; eu1;0; :::; eum; 0; :::; eu0;k � 1; eu1;k � 1; :::; eum;k � 1]T ; therefore the matrix B can be repre-
sented as an upper triangular Toeplitz form

B =

2

6
6
6
6
6
4

eu0;0 eu1;0 eu2;0 � � � eum;k � 1

0 eu0;0 eu1;0 � � � eum � 1;k � 1

0 0 eu0;0 � � � eum � 2;k � 1
...

...
...

...
...

0 0 0 � � � eu0;0

3

7
7
7
7
7
5

:

The operational Tau representation of the integration terms for a class of VFHIEs is presented here in Theorems1; 2. Using
Theorems1 and2 the operational Tau matrix for Volterra and Fredholm integration terms of the VFHIEs is obtained. The
following theorems which its proof is based mainly on Lemma1 is given.

Theorem 2 Let that the analytic functionsu(s) andk1(t; s) can be expressed as :

u(s) '
P k � 1

n =0

P m
i =0 ui;n  i;n (s) = uT � (s) = uT � X s;

k1(t; s) ' � T (t)K 1� (s) = X T
t � T K 1� X s =

P km +( k � 1)
i =0

P km +( k � 1)
j =0

fK 1( i;j ) si t j ;

whereu = [ u0;0; u1;0; :::; um; 0; :::; u0;k � 1; u1;k � 1; :::; um;k � 1]T ; � = [� i;j ]km +( k � 1)
i;j =0 is a non-singular matrix andX s =

[1; s; s2; :::; skm +( k � 1) ]T , then we have

Rt
0 k1(t; s)up(s)ds ' uT � B p� 1M 1X t ;

whereM 1 is in the following form

2

6
6
6
6
6
6
6
6
4

0 fK 1(0 ;0)
fK 1(0 ;1) + 1

2
fK 1(1 ;0)

fK 1(0 ;2) + 1
2

fK 1(1 ;1) + 1
3

fK 1(2 ;0) � � �
0 0 1

2
fK 1(0 ;0)

1
2

fK 1(0 ;1) + 1
3

fK 1(1 ;0) � � �
0 0 0 1

3
fK 1(0 ;0) � � �

...
...

...
... � � �

0 0 � � � 0 1
m (k )+( k � 1)

fK 1(0 ;0)

0 0 � � � 0 0

3

7
7
7
7
7
7
7
7
5

;

and B has been given in Lemma1.

IJNS email for contribution:editor@nonlinearscience.org.uk



Y. Ordokhani, S. Moosavi: Numerical Solution of Volterra-Fredholm-Hammerstein Integral Equations by the Tau Method� � � 183

Proof. Using Lemma1, we have:
up(s) ' uT � B p� 1X s;

alsok1(t; s)up(s) ' uT � B p� 1[k1(t; s); sk1(t; s); :::; skm +( k � 1) k1(t; s)]T : We can write:

k1(t; s)sn '
P km +( k � 1)

i =0

P km +( k � 1)
j =0

fK 1( i;j ) t j sn + i ;

the integration term can be written as:

Rt
0 k1(t; s)up(s)d(s) ' uT � B p� 1[

Rt
0 k1(t; s)sn d(s)]km +( k � 1)

n =0

= uT � B p� 1[
P km +( k � 1)

i =0

P km +( k � 1)
j =0

fK 1( i;j ) t j t n + i +1

n + i +1 ]km +( k � 1)
n =0 :

On the other hand, we have

P km +( k � 1)
i =0

P km +( k � 1)
j =0

fK 1( i;j )
t n + j + i +1

n + i +1 = [ 1
n + i +1 ]km +( k � 1)

i =0
fk1(n)X t ;

such thatfk1(n) is a matrix having the following entrise

fk1( i;j ) (n) =
�

fK 1( i;j � i � 1� n ) ; j > n + i;
0; j � n + i:

Therefore, we can write

Rt
0 k1(t; s)up(s)d(s) ' uT � B p� 1[[ 1

n + i +1 ]km +( k � 1)
i =0

fk1(n)X t ]
km +( k � 1)
n =0 ;

= uT � B p� 1[[ 1
n + i +1 ]km +( k � 1)

i =0
fk1(n)]km +( k � 1)

n =0 X t ;

= uT � B p� 1M 1X t :

Theorem 3 Let that the analytic functions u(s) andk2(t; s) can be expressed as:

u(s)'
P k � 1

n =0

P m
i =0 ui;n  i;n (t) = uT � (s) = uT � X s;

k2(t; s) ' � T (s)K 2� (t) = X T
s � T K 2� X t =

P km +( k � 1)
i =0

P km +( k � 1)
j =0

fK 2( i;j ) t i sj ;

where u = [ u0;0; u1;0; :::; um; 0; :::; u0;k � 1; u1;k � 1; :::; um;k � 1]T ; � = [� i;j ]km +( k � 1)
i;j =0 is a non-singular matrix and

X s = [1 ; s; s2; :::; skm +( k � 1) ]T , then we have

R1
0 k2(t; s)up(s)ds ' uT � B p� 1M 2X t ;

such thatM 2 is a matrix having the following form

M 2 =

2

6
6
6
4

P k (m )+( k � 1)
j =0

fK 2 (0 ;j )

j +1 � � �
P k (m )+( k � 1)

j =0

fK 2 ( k ( m )+( k � 1) ;j )

j +1
...

...
...

P k (m )+( k � 1)
j =0

fK 2 (0 ;j )

j + k (m +1) � � �
P k (m )+( k � 1)

j =0

fK 2 ( k ( m )+( k � 1) ;j )

j + k (m +1)

3

7
7
7
5

;

and B has been given in Lemma1.
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Proof. According to Lemma1:

up(s) ' uT � B p� 1X s;

also

k2(t; s)up(s) ' uT � B p� 1[k2(t; s); sk2(t; s); :::; skm +( k � 1) k2(t; s)]T :

We can write:

k2(t; s)sn =
P km +( k � 1)

i =0

P km +( k � 1)
j =0

fK 2( i;j ) t i sn + j ;

the integration term can be written as:

R1
0 k2(t; s)up(s)d(s) ' uT � B p� 1[

R1
0 k2(t; s)sn d(s)]km +( k � 1)

n =0

= uT � B p� 1[
P km +( k � 1)

i =0

P km +( k � 1)
j =0

fK 2( i;j ) t i 1
n + j +1 ]km +( k � 1)

n =0 :

On the other hand, we will have

[
P km +( k � 1)

i =0

P km +( k � 1)
j =0

fK 2( i;j ) t i 1
m + j +1 ]km +( k � 1)

m =0 = M 2X t ;

such thatM 2 having following form:

2

6
6
6
4

P k (m )+( k � 1)
j =0

fK 2 (0 ;j )

j +1 � � �
P k (m )+( k � 1)

j =0

fK 2 ( k ( m )+( k � 1) ;j )

j +1
...

...
...

P k (m )+( k � 1)
j =0

fK 2 (0 ;j )

j + k (m +1) � � �
P k (m )+( k � 1)

j =0

fK 2 ( k ( m )+( k � 1) ;j )

j + k (m +1)

3

7
7
7
5

:

3.1 Numerical Tau approximation of the FVHIEs

Here the previous results are applied to construct Tau approximate solution of(1). Without loss of generality and owing
to the large variety of kernels and nonlinearities that occur in practice, the assumption is based on the fact that in (1), the
analytic function can be expanded as

G1(s; u(s)) '
P n

p=0 
 p(s)up(s); G2(s; u(s)) '
P n

p=0 � p(s)up(s):

Tau approximation of(1) is considered as follows:

u(t) = f (t) + � 1
P n

p=0

Rt
0 k1(t; s)
 p(s)up(s)d(s) + � 2

P n
p=0

R1
0 k2(t; s)� p(s)up(s)d(s);

wheret 2 [0; 1]; in which it can be written as

u(t) = f (t) + � 1
Rt

0 k1(t; s)
 0(s)d(s) + � 2
R1

0 k2(t; s)� 0(s)d(s) + � 1
P n

p=1

Rt
0 k1(t; s)
 p(s)up(s)d(s)

+ � 2
P n

p=1

R1
0 k2(t; s)� p(s)up(s)d(s); t 2 [0; 1]:

Let F (t) = f (t) +
Rt

0 k1(t; s)
 0(s)d(s) +
R1

0 k2(t; s)� 0(s)d(s) and us setkp1(t; s) = k1(t; s)
 p(s), kp2(t; s) =
k2(t; s)� p(s), where
 p(s), � p(s); (p = 1 ; :::; n) are continuous functions. Using the given notations in Theorems1
and2 the above equation can be transformed into the following matrix form:

uT � X t = F T � X t + � 1
P n

p=1 uT � B p� 1M p1X t + � 2
P n

p=1 uT � B p� 1M p2X t ; (8)
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where forp = 1 ; :::; n, matrix formM p1 is:
2

6
6
6
6
6
6
6
6
6
6
6
4

0 K p1(0 ;0) K p1(0 ;1) +
K p 1 (1 ; 0)

2 K p1(0 ;2) +
K p 1 (1 ; 1)

2 +
K p 1 (2 ; 0)

3 � � �

0 0
K p 1 (0 ; 0)

2

K p 1 (0 ; 1)

2 +
K p 1 (1 ; 0)

3 � � �

0 0 0
K p 1 (0 ; 0)

3 � � �
...

...
...

... � � �

0 0 � � � 0
K p 1 (0 ; 0)

m (k)+( k � 1)

0 0 � � � 0 0

3

7
7
7
7
7
7
7
7
7
7
7
5

;

and forp = 1 ; :::; n, matrix formM p2 is:

2

6
6
6
4

P k (m )+( k � 1)
j =0

K p 2 (0 ;j )

j +1 � � �
P k (m )+( k � 1)

j =0
K p 2 ( k ( m )+( k � 1) ;j )

j +1
...

...
...

P k (m )+( k � 1)
j =0

K p 2 (0 ;j )

j + k (m +1) � � �
P k (m )+( k � 1)

j =0
K p 2 ( k ( m )+( k � 1) ;j )

j + k (m +1)

3

7
7
7
5

:

Equation(8) can be written as:

uT � X t = F T � X t+ � 1
P n

p=1 uT � B p� 1M p1� � 1� X t+ � 2
P n

p=1 uT � B p� 1M p2� � 1� X t ;

and so

uT � (t)= F T � (t)+ � 1uT �
P n

p=1 B p� 1M p1� � 1� (t)+ � 2uT �
P n

p=1 B p� 1M p2� � 1� (t):

Therefore, we have

uT = F T + � 1uT �
P n

p=1 B p� 1M p1� � 1 + � 2uT �
P n

p=1 B p� 1M p2� � 1: (9)

According to the structure of the matrices� ; M p1; M p2 and upper triangular Toeplitz matrix B with the same diagonal
entries, a system of(m(k + 1)) � (m(k + 1)) equations is obtained whose solution gives the unknown components of the
vectoru = [ u0;0; u1;0:::; um; 0; :::; u0;k � 1; u1;k � 1:::; um;k � 1]T :

Remark 4 For G1(s; u(s)) = ui (s); G2(s; u(s)) = uj (s), system(8) can be represented as a simple form

uT = f T + � 1uT � B i � 1M 1� � 1 + � 2uT � B j � 1M 2� � 1: (10)

Here it is shown how to compute the matricesB i � 1; B j � 1; which are required in the construction of system(10). Through
simple calculations, the upper triangular Toeplitz matrixB i � 1 is as follows:

2

6
6
6
6
6
6
4

(eu0;0) i � 1 c0(eu0;0) i � 2eu0;1 c1(eu0;0) i � 3(eu0;1)2 + c2(eu0;0) i � 2eu0;2 � � �
0 (eu0;0) i � 1 c0(eu0;0) i � 2eu0;1 � � �
0 0 (eu0;0) i � 1 � � �
...

...
...

...
0 � � � 0 (eu0;0) i � 1

3

7
7
7
7
7
7
5

;

wherec0; c1; c2; ::: are constant. Multiplying both sides of(10) by � , we get

uT � = f T � + � 1uT � B i � 1M 1 + � 1uT � B j � 1M 2:
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Let us introduceeu = � T u and ef = � T f , with eu = [ eu0;0; eu1;0; :::; eum; 0; :::; eu0;k � 1; eu1;k � 1:::; eum;k � 1]T and
ef = [ ef 0;0; ef 1;0:::; ef m; 0; :::; ef 0;k � 1; ef 1;k � 1:::; ef m;k � 1]T ; then the above equation take the form of

euT = ef T + � 1euT B i � 1M 1 + � 2euT B j � 1M 2: (11)

The following algorithm summarizes the proposed Tau method :

Algorithm1. The construction of Tau approximation system
Step 1. Choose m, k, compute the non-singular coef�cient matrix� as � (t) = �[1 ; t; t 2; :::;

tkm +( k � 1) ]
T

:

Step 2. Computeef = � T f by using of� (t) asf (t) '
P k � 1

n =0

P m
i =0 f i;n  i;n (t) = f T � (t);

wheref T = (
R1

0 f (t)� T (t)dt)D � 1.

Step 3. Compute the matrices B ,B k for k = 1 ; :::; i � 1(j � 1) andM 1 andM 2 from Lemma1
and Theorems1 and2.

Step 4. Takeeu = [ eu0;0; eu1;0; :::; eum; 0; eu0;k � 1; eu1;k � 1; :::; eum;k � 1]T and obtain the entries of the
vector solutioneu from the system of equationeuT = euT B i � 1M 1 + euT B j � 1M 2 + ef T .

Step 5. Using forward substitution, computeeu0;0; eu1;0; :::; eum; 0; eu0;k � 1; eu1;k � 1; :::; eum;k � 1 from
step 4, and setu = (� T )

� 1
eu; thenun (t) = uT � (t):

4 Illustrative examples

In this section, presented method of this article is applied to solve seven examples. The computations associated with the
examples were performed using Mathematica.

Example 5 Consider the following VFHIE[1]

u(t) = �
t6

30
+

t4

3
� t2 +

5t
3

�
5
4

+
Z t

0
(t � x)u2(x)d(x) +

Z 1

0
(t + x)u(x)d(x); t 2 [0; 1];

with the exact solution:u(t) = t2 � 2.The present method is used for this example. For computational details and
numerical implementation of the proposed Tau algorithm, we takem = 2 ; k = 1 , so the following simple matrices in the
case of BMS functions are obtained :

� =

2

4
1 � 2 1
0 2 � 2
0 0 1

3

5 ; M 1 =

2

4
0 0 1

2
0 0 0
0 0 0

3

5 ; M 2 =

2

6
6
6
6
6
6
4

1
2 1 0

1
3

1
2 0

1
4

1
3 0

3

7
7
7
7
7
7
5

;

and using the given algorithm, the nonlinear system of equations is obtained

5
4 + 1

2 eu0;0 � 1
3 eu0;1 � 1

4 eu0;2 = 0 ;
� 5
3 � eu0;0 + 1

2 eu0;1 � 1
3 eu0;2 = 0 ;

1 � 1
2 eu2

0;0 + eu0;2 = 0 ;

with the exact solution:eu0;0 = � 2; eu0;1 = 0 ; eu0;2 = 1 . Thus we haveeu = [ � 2; 0; 1]T : Using the computationu =
(� T )

� 1
eu, the approximate solution are to be asum (t) = uT � (t) that it isum (t) = t2 � 2; which is the exact solution of

the integral equation.
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Example 6 Consider the nonlinear VFHIE of the form[25]

u(t) = e2t + 1
3 +

Z 1

0

� 1
3

e2t � 5
3 su(s)d(s); t 2 [0; 1];

with the exact solutionu(t) = e2t . You can see in Table1, the absolute errors of some points of[0; 1] for the present
method and comparing the obtaining results of the present method with methods[25; 26] shows that this method has high
accuracy than methods[25; 26].

Table1. The numerical results of Example2.
t Present Method of[25] Present Method of[25] Method of[26]

method method
m = 3 ; k = 2 M = 3 ; N = 4 m = 4 ; k = 4 M = 4 ; N = 4 for m = 128

0:0 0 0:26� 10� 4 0 0:34� 10� 7 0:4 � 10� 4

0:2 0:24� 10� 5 0:14� 10� 2 0:23� 10� 6 0:22� 10� 4 0:2 � 10� 4

0:4 0:62� 10� 3 0:11� 10� 2 0:66� 10� 5 0:54� 10� 4 0:3 � 10� 4

0:6 0:11� 10� 2 0:16� 10� 2 0:32� 10� 5 0:87� 10� 4 0:5 � 10� 4

0:8 0:59� 10� 3 0:54� 10� 2 0:71� 10� 6 0:93� 10� 4 0:3 � 10� 4

Example 7 Consider the VFHIE[3]

u(t) = 1 + sin 2(t) �
Z t

0
3sin (t � s)u2(s)d(s); t 2 [0; 1];

where the exact solution is u(t)=cos(t). In this example Tau method is used with BMS functions for(m = 2 ; k = 2) . The
exact solution and computational results of the present method and methods[3; 24] is shown in Table3. Figure1(a; b).

Example 8 Consider the nonlinear VFHIE given in[27]by

u(t) = et +1 �
Z 1

0
et � 2su3(s)d(s); t 2 [0; 1];

where the exact solution isu(t) = et . Tau method is applied and this example is solved withm = 3 ; 4; k = 3 . The
comparison between approximate solutions of the present method and Haar wavelets method[27] together with the exact
solution is shown in Table2. As it is appeared in this table, Tau method with BMS functions has high accuracy compared
with the Haar wavelets[27]. Figure2(c; d).

Table2. The approximate and the exact solutions of Example4
t Present method Method of[27] Exact solution

m = 3 ; k = 3 m = 4 ; k = 3 for k = 32
0:1 1:105171260 1:105170921 1:107217811 1:105170918
0:2 1:221404329 1:221402760 1:218102916 1:221402757
0:3 1:349858467 1:349858770 1:341165462 1:349858806
0:4 1:491833532 1:491824775 1:474918603 1:491824696
0:5 1:648719077 1:648721182 1:667402633 1:648721268
0:6 1:822128794 1:822119061 1:833861053 1:822118797
0:7 2:013740095 2:013753128 2:016679830 2:013752703
0:8 2:225553484 2:225540930 2:217456630 2:225540923
0:9 2:459610217 2:459603124 2:437978177 2:459603104

Cpu time 4:84 8:55 � �
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Example 9 Consider the nonlinear VFHIE given in[28]by

u(t) = � t3(� 1 + esin ( t ) ) + sin (t) +
Z t

0
t3cos(s)eu(s) d(s); t 2 [0; 1];

where the exact solution isu(t) = sin (t). Example5, were solved in[28] by a method based on Taylor series expansion
approach. The reported results of the proposed Tau method and the method[28]are shown in Table4.

Table3: The computational results and the exact solutions of Example3
t Exact solution Present method Method of[3] Method of[24]

m = 2 ; k = 2 m = 8 ; k = 2 m = 16
0:0 1 1:0000 1:0000 1:0000
0:2 0:9801 0:9801 0:9801 0:9800
0:4 0:9211 0:9211 0:9211 0:9210
0:6 0:8253 0:8253 0:8253 0:8255
0:8 0:6967 0:6967 0:6967 0:6969

Cpu time � 1:25 � �
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Figure1: (a)The exact and the approximate solution of Example3 for m = 2 ; k = 2 ; (b) The absolute difference error of
Example3 for variant value of m,k;
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Figure2: (c)The exact and the approximate solution of Example4 for m = 3 ; k = 3 ; (d) The absolute difference error of
Example4 for variant value of m,k;

IJNS email for contribution:editor@nonlinearscience.org.uk



Y. Ordokhani, S. Moosavi: Numerical Solution of Volterra-Fredholm-Hammerstein Integral Equations by the Tau Method� � � 189

Table4: The absolute errors of Example5
t Exact Present Method of Present Method of

solution method [28] method [28]
m = 3 ; k = 1 N = 4 m = 5 ; k = 1 N = 9

0 0 0 0 0 0
0:2 0:19866 0:19866 0:19866 0:19866 0:19866
0:4 0:38941 0:38938 0:38933 0:38941 0:38941
0:6 0:56460 0:56422 0:56400 0:56460 0:56464
0:8 0:71535 0:71520 0:71466 0:71535 0:71735

Cpu time � 1:57 � 2:45 �

Example 10 Consider the nonlinear VFHIE[29]

u(t) =
t
e

+
Z 1

0
2tse� u 2 (s) d(s); t 2 [0; 1];

where the exact solution ist: Table5 represents the maximal errors of the present method together with the errors of the
method[29] for Example6. Figure3.

Table5: The numerical results of Example6
Present method Method of[29]

m k Maximal error N Maximal error
1 8 1:65� 10� 7 16 1:28� 10� 6

2 6 1:51� 10� 8

3 5 1:26� 10� 9 32 2:48� 10� 7

3 6 7:03� 10� 12

4 6 7:54� 10� 15 64 5:04� 10� 8

Example 11 Consider the following VFHIE[30]

u(t) = 1 + t + (1 �
3
2

ln (3) +

p
3

6
� )t2 +

Z 1

0
2t2sln(u(s))d(s); t 2 [0; 1];

with the exact solution is1 + t + t2. The comparison among Tau solutions in some points of[0; 1] for m = 2 ; k = 2 and
the approximate solutions of method[30] for N = 6 are shown in Table6. As you see in this table, the present method with
BMS functions has advantageous solutions over method[30]. Also in this table we show Tau solutions form = 2 ; k = 7 .
It is observed that by increasing the value ofm; k the resulted accuracy increased as well.

Table6. The approximate and the exact solutions for Example7
t Present method Present method Method of[30] Exact solution

m = 2 ; k = 2 m = 2 ; k = 7 N = 6
0:0 1:000000 1:000000 1:000000 1
0:1 1:110572 1:109999 � 1:11
0:2 1:240464 1:239999 1:238432 1:24
0:3 1:388941 1:389999 � 1:39
0:4 1:558908 1:559988 1:553726 1:56
0:5 1:751675 1:749977 � 1:75
0:6 1:953658 1:959960 1:945884 1:96
0:7 2:176550 2:189936 � 2:19
0:8 2:423034 2:439904 2:414905 2:44
0:9 2:696922 2:709863 � 2:71
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Figure3: The comparison between absolute errors of Example6 for some k and m.
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5 Conclusion

The numerical solution of VFHIEs with an extension of Tau method based on BMS functions is presented in this paper.
Using Tau method, it is given a structurally simple algorithm that is conventionally applicable to the numerical solution
of VFHIEs. Some useful results are obtained in this method. The most important ones are: the simplicity of the method,
reducing the computations using Tau method and having low run time of its algorithm. Our numerical results of examples
show that Tau method with BMS functions basic can be approximated solutions with high accuracy. Particular with
increasing the value of m,k the resulted accuracy increased as well.
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