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Abstract: In this paper, we apply homotopy analysis method (HAM) for computing the eigenvalues of Sturm-
Liouville problems. The parameter h, in this method, helps us to adjust and control the convergence region.
The results show that this method has validity and high accuracy with less iteration number in compare to
Variation Iteration Method (VIM) and Adomian decomposition method (ADM). Moreover it is illustrated
that this method is independent of eigenvalues indexes.

Keywords: Sturm-Liouville equation; eigenvalue; homotopy analysis method.

1 Introduction

Most phenomena in real world are described through Sturm-Liouville and Schrodinger equations and these type of equa-
tions have attracted lots of attention among scientists. A classical Sturm-Liouville equation, named Schrodinger equation,
is a real second-order linear differential equation of the form

y′′(x) = (q(x)− λ)y(x), (1)

with separated boundary conditions

a0y(a) + b0y
′(a) = 0, a1y(b) + b1y

′(b) = 0, (2)

where q(x) and y(x) are called the potential function and eigenfunction respectively on the finite interval [a, b][1,2], and
λ is the eigenvalue of the equation.
In relation (2), a0 and b0 are not both zero, and similarly for a1, b1.

This linear second order differential equation describes a lot of important physical phenomena which exhibit a pro-
nounced oscillatory character; behavior of pendulum-like systems, vibrations, resonances and wave propagation are all
phenomena of this type in classical mechanics, while the same is true for the typical behavior of quantum particles.

Large class of nonlinear equations such as Sturm-Liouville equations do not have a precise analytic solution, so
numerical methods have largely been used to handle these equations [3,8].

In this paper we extend the HAM for determining the eigenvalues of Sturm-Liouville equation.
HAM firstly was developed by S. J. Liao in 1992. This method can be applied to different type of problems in many

engineering and physical applications[9,14]. HAM contains a certain auxiliary parameter h, which provides us with a
simple way to adjust and control the convergence region and rate of convergence of the series solution. This method
properly overcomes restrictions of perturbation techniques because it does not need any small or large parameters to be
contained in the problem. Moreover some methods such as ADM and the Homotopy Perturbation Method (HPM) are
special cases of HAM[15,17].
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2 Homotopy Analysis Solution
For convenience of the readers, we will first present a brief description of the standard HAM. To achieve our goal, let us
assume the nonlinear differential equations be in the form of

N [u(t), λ] = 0, (3)

where N are nonlinear operators, t is an independent variable, u(t) and λ are eigenfunction and eigenvalues of our equa-
tion respectively. By means of generalizing the traditional homotopy method, Liao construct the zeroth-order deformation
equation as follows

(1− q)L[ϕ(t, q)− u0(t)] = qhH(t)N [ϕ(t, q),Λ(q)], (4)

where q ∈ [0, 1] is an embedding parameter, h is a auxiliary parameter and H(t) is nonzero auxiliary function, L and N
are linear and nonlinear operators, u0(t) and λ0 are initial guesses of u(t) and λ, ϕ(t; q) and Λ(q) are unknown functions.
It is important to note that, one has great freedom to choose auxiliary objects such as h and L in HAM; this freedom plays
an important role in establishing the keyston of validity and flexibility of HAM as shown in this paper. Obviously, when
q = 0 and q = 1, both

ϕ(t, 0) = u0(t) and ϕ(t, 1) = u(t), (5)
Λ(0) = λ0 and Λ(1) = λ, (6)

hold. Thus as q increases from 0 to 1, the solutions of ϕ(t; q) and Λ(q) change from the initial guesses u0(t) and λ0 to the
solutions u(t) and λ . Expanding ϕ(t; q) in Taylor series with respect to q, one has

ϕ(t, q) = u0(t) +
+∞∑
m=1

um(t)qm, (7)

Λ(q) = λ0 +
+∞∑
m=1

λmqm, (8)

where

um(t) =
1

m!

∂mϕ(t, q)

∂qm
∣∣
q=0

, (9)

λm =
1

m!

∂mΛ(q)

∂qm
∣∣
q=0

. (10)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters h, and the auxiliary function is so properly
chosen, then the series (7) and (8) converges at q = 1, one has

ϕ(t, 1) = u0(t) +

+∞∑
m=1

um(t), (11)

Λ(1) = λ0 +

+∞∑
m=1

λm, (12)

which must be one of the solutions of the original nonlinear equations, as proved by Liao. Define the vectors

u⃗n(t) = {u0(t), u1(t), ..., un(t)}, (13)

λ⃗n(t) = {λ0, λ1, ..., λn}. (14)

Differentiating (4), m times with respect to the embedding parameter q and then setting q = 0 and finally dividing them
by m!, we have the so-called mth-order deformation equation

L[um(t)− χmum−1(t)] = hRm(u⃗m−1, λ⃗m−1), (15)
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with the conditions

um(a) = um(b) = 0, (16)

where

Rm(u⃗m−1) =
1

(m− 1)!

∂m−1N [ϕ(t, q),Λ(q)]

∂qm−1

∣∣
q=0

, (17)

and

χm =

{
0 m ≤ 1,
1 m > 1.

(18)

It should be emphasized that um(t) is governed by the linear equations (4) and (15) with the linear boundary conditions
that come from the original problem. These equations can be easily solved by symbolic computation softwares such as
Maple and Mathematica.

3 Applications
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Figure 1: Approximation of λ5 when −1.2 ≤ h ≤
−0.8.
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Figure 2: Approximation of λ10 when −1.2 ≤ h ≤
−0.8.

In this section, some examples are given to confirm the validity and high accuracy for the proposed method.

Example 1 Let us consider the equation (1) with q(x) = 0 and Dirichlet boundary conditions

y(0) = y(π) = 0. (19)

The solution of u(t) can be expressed by a set of base functions

{sin(kmt), m = 0, 1, ...}. (20)

To obey the base function (20) and boundary condition (19), it is straightforward to choose the initial guess as

u0(t) = sin(kt). (21)
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By following the process of previous section, we choose the auxiliary linear operator L and N , as follows

L[ϕ(t, q)] =
∂2ϕ(t, q)

∂t2
+ k2ϕ(t, q), (22)

which has the property

L[c1sin(kt) + c2cos(kt)] = 0, (23)

and

N [ϕ(t, q)] = −∂2ϕ(t, q)

∂t2
− Λ(q)ϕ(t, q). (24)

Then we have

Rm(u⃗m−1, λ⃗m−1) = −u
′′

m−1(t)−
m−1∑
j=0

λmum−1−j(t). (25)

Note that both um(t) and λm−1 are unknown, but we have only one differential equation for um(t). So, the problem is
not closed and an additional algebraic equation is needed to determine λm−1. Assume that H(t) is properly chosen so
that the right-hand side term of the high-order deformation equation (25) can be expressed by

hH(t)Rm(u⃗m−1, λ⃗m−1) =

µm∑
n=0

bm,nλm−1 sin(knt), (26)

where bm,nλm−1 is a coefficient and the positive integer µm depends upon H(t) and m. According to the property of L,
when bm,0λm−1 ̸= 0, the solution of the mth-order deformation equation (26) contains the term

t sin(kt), (27)

which disobeys the rule of solution expression denoted by (20). To avoid this, we have to enforce

bm,0λm−1 = 0, (28)

which provides us with an additional algebraic equation for λm−1. In this way, the problem is closed. Therefore, it is easy
to gain the solution of Equation (15), say,

um(t)− χmum−1(t) =

µm∑
n=1

bm,n

k2(1− n2)
sin(nkt) + C1 sin(kt) + C2 cos(kt) (29)

where C1 and C2 are coefficients. Under the rule of solution expression denoted by (19), C2 must be zero. In this way, we
gain λm−1 and um(t) successively. At the Nth-order of approximation, we have

u(t) = u0(t) +

N∑
m=1

um(t), (30)

λ = λ0 +
N∑

m=1

λm. (31)

For the sake of simplicity, we choose here

H(t) = 1. (32)

Then, using (26),we have

hR1(u⃗0, λ⃗0) = h(− sin(kx)k2 + λ0 sin(kx)) (33)

which gives according to above illustration

b1,0 = λ0 − k2 b1,1 = 0. (34)
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Then

λ0 − k2 = 0 ⇒ λ0 = k2, (35)

and

λk = 0, k ≥ 1 then λ = k2, (36)

where are the exact values of eigenvalues problems.

Example 2 Let us consider example 1 with Neuman-Dirichlet boundary conditions:

y
′
(0) = 0, y(1) = 0. (37)

By choosing the following base function for u(t)

{cos((kπ +
π

2
)mt), m = 0, 1, ...}, (38)

it is straightforward to choose the initial guess as

u0(t) = cos((kπ +
π

2
)t), (39)

and we choose the linear operator L as follows

L[ϕ(t, q)] =
∂2ϕ(t, q)

∂t2
+ (kπ +

π

2
)2ϕ(t, q), (40)

with has the following property

L[c1sin(kπ +
π

2
) + c2cos(kπ +

π

2
)] = 0. (41)

Using the same relation (24) and (25), we write

hH(t)Rm(u⃗m−1, λ⃗m−1) =

µm∑
n=0

bm,nλm−1cos((kπ +
π

2
)mt). (42)

if we take bm,0λm−1 ̸= 0, The solution of the mth-order deformation equation (42) contains the term

t cos((kπ +
π

2
)t). (43)

To avoid this term we enforce

bm,0λm−1 = 0. (44)

Hence by using similar computations in example 1, we reach the following recurrence relation

um(t)− χmum−1(t) =
1

(kπ + π
2 )

2
+

µm∑
n=2

bm,n

(kπ + π
2 )(1− n2)

cos((kπ +
π

2
)mt) + cos(kπ +

π

2
). (45)

By letting H(t) = 1 and applying (42) we obtain

hR1(u⃗0, λ⃗0) = h[− cos((kπ +
π

2
)x)(kπ +

π

2
)2 + λ0 cos((kπ +

π

2
)x)], (46)

according to (26), which gives

b1,0 = λ0 −
π2(2k + 1)2

4
b1,1 = 0, (47)

and

λk = 0, k ≥ 1 then λ =
π2(2k + 1)2

4
. (48)

Again we obtain the exact solution.
In the next example, we show the effectiveness of our method by choosing an oscillatory function.
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Table 1: computation of eigenvalues by HAM and comparison them to other methods with iteration N = 4.
λk Exact Solution HAM for various of h VIM ADM

k = 0 0.918058176625213 1.145989294 h=-0.6 0.91799210213 0.9194733525
k=1 4.031921988127956 4.031929949 h=-0.9 not available 2.555191113
k=2 9.014301750061977 9.014020152 h=-0.8 ” not available
k=3 16.00793923538222 16.00784612 h=-0.85 ” ”
k=4 25.00505118570864 25.00500426 h=-0.85 ” ”
k=5 36.00349672552254 36.00346592 h=-1.1 ” ”
k=6 49.00256418923281 49.00254604 h=-0.85 ” ”
k=7 64.00196082281326 64.00195162 h=-0.9 ” ”
k=8 81.00154800647830 81.00154125 h=-1 ” ”
k=9 100.0012531428047 100.0012406 h=-0.8 ” ”
k=10 121.0010352022962 121.0010316 h=-0.9 ” ”
k=20 441.0002836076016 441.0002831 h=-1 ” ”

Example 3 In this example we consider(1) with q(x) = cos(x) and Dirichlet boundary (19). By using the base functions

{sin[(k +m− 1)t], m = 0, 1, ...}. (49)

and choosing the initial guess

sin(kt), (50)

We consider a linear operator as follows

L[ϕ(t, q)] =
∂2ϕ(t, q)

∂t2
+ k2ϕ(t, q), (51)

with the possession of

L[c1sin(kt) + c2cos(kt)] = 0, (52)

N [ϕ(t, q)] = −∂2ϕ(t, q)

∂t2
+ [cos(t)− Λ(q)]ϕ(t, q). (53)

Then we obtain

Rm(u⃗m−1, λ⃗m−1) = −u
′′

m−1(t) + cos(t)um−1(t) +
m−1∑
j=0

λmum−1−j(t). (54)

Using the previous discussion, we have the final recurrence

um(t)− χmum−1(t) =
bm,0

(k + 1)2 − k2
sin(kt) +

µM∑
n=2

bm,n

(k + 1)2 − (k + n)2
sin[(k + n)(t)] + c1 sin((k + 1)t).(55)

So, in this way, we obtain λ0, u1, λ1, u2, λ2, u3,..., one after the other. This is easy to do by means of the symbolic
computation software, and determine the convergence region in following diagrams for some of them by the parameter h,
as well as the comparison of our results between ADM and VIM.
Our convergence region are drawn for some cases in figures (1) and (2) and results are shown in Table (1). (the exact
solution refereed to MATSLISE software package[30] )
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4 Conclusion
In this paper, we approximate the eigenvalues for Sturm-Liouville problems with various initial conditions when q(x) = 0
to show the validity of HAM and for oscillating potential function to show the effectiveness of it. The convergence region
for eigenvalues are determined by the parameter h, which provides us a great freedom to choose convenient value for it.
The comparison of our results with the results of ADM and VIM, show that this method has higher accuracy and fast
convergence as well as more availability of eigenvalues.
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