The Approximate Solution for BBM Equation under Slowly Varying Medium

Weiwei Gaoa,*, Lixin Tiana,b, Wenxia Chena, Jingdong Weia
a Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, 212013. P.R. China
b School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023. P.R. China

(Received 11 January 2015, accepted 12 April 2015)

Abstract: In this paper, we consider the soliton dynamics on the potential internal for the BBM equation under a slowly varying medium. We construct an approximate solution for this equation and prove that the error term due to the approximate solution can be controlled.

Keywords: BBM equation; approximate solution; slowly varying medium.

1 Introduction

In this work, we consider the following BBM equation under slowly varying medium,

\begin{equation}
(1 - \frac{1}{2} \partial^2_x) u_t + (u_{xx} - u + a \epsilon x^2) x = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}.
\end{equation}

Here \(u = u(t, x) \) is a real-valued function and \(a = a(\epsilon x) \) satisfies the following conditions. There exist constants \(K, \gamma > 0 \) such that

\begin{equation}
\begin{cases}
1 < a(r) < 2, a'(r) > 0, \forall r \in \mathbb{R}, \\
0 < a(r) - 1 < Ke^{\gamma r}, \forall r \leq 0, \\
0 < 2 - a(r) < Ke^{-\gamma r}, \forall r > 0.
\end{cases}
\end{equation}

In particular, \(\lim_{r \to -\infty} a(r) = 1 \) and \(\lim_{r \to +\infty} a(r) = 2. \)

We construct the approximate solution of the equation on the internal of \([T_x, T_x] \) and then prove that the error term due to the approximate solution can be controlled under \(O(\epsilon^2 e^{-\gamma|t|}). \)

Many relevant works have been done. Kaup and Newell [1] considered the study of perturbations of integrable e-
quations, in particular, they considered the perturbed gKdV equation. Grimshaw [2,3] introduced slowly varying solitary
waves for the Korteweg-de-Vries equation and nonlinear Schrödinger equation. K.Ko and H.H.Kuehl [4] had a research
on the Korteweg-de Vries equation with slowly varying coefficients for a soliton initial condition. Recently, C. Muñoz
made many contributions to this work. He [5-7] researched the soliton dynamics under a slowly varying medium and
inelastic character of solitons for generalized KdV equations. At the same time, Muñoz [8,9] studied the soliton dynamics
and sharp inelastic character under slowly varying medium for nonlinear Schrödinger equations.

2 Preliminary

2.1 Soliton solution of BBM equation

Recall the so-called Benjamin-Bona-Mahony equation,

\begin{equation}
(1 - \frac{1}{2} \partial^2_x) u_t + (u_{xx} - u + u^2) x = 0, \quad t, x \in \mathbb{R}.
\end{equation}
This equation has the soliton solutions as follows:

$$u(t, x) = Q_c(x - ct), \quad Q_c = (1 + c)Q\left(\sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}}; x\right).$$ \hspace{1cm} (2.2)

where $Q(x) = \frac{3}{2} \cosh^{-2}\left(\frac{x}{2}\right)$, solves $Q'' + Q^2 = Q$. \hspace{1cm} (2.3)

2.2 Definition of (IP) property

We say that $A_c(\epsilon t, x)$ satisfies the (IP) property if and only if:

(i) Any spatial derivative of $A_c(\epsilon t, x)$ is a localized Y-function.

(ii) There exists $K, \gamma > 0$ such that $||A_c(\epsilon t, x)||_{L^\infty(R)} \leq Ke^{-\gamma|t|}$ for all $t \in R$.

Y-function means the set of functions $f \in C^\infty(R, R)$ such that

$$\forall j \in N, \exists C_j, r_j > 0, \forall x \in R, \left|f^{(j)}(x)\right| \leq C_j(1 + |x|)^r e^{-|x|}.$$ \hspace{1cm} (2.4)

2.3 The characters of Q_c and the properties of the new operator L

Lemma 1 For $Q_c = (1 + c)Q\left(\sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}}; x\right)$.

(i)

$$(1 + \frac{1}{2}c)Q''_c + Q^2_c = (1 + c)Q_c, \quad \Lambda Q_c = \left(\frac{d}{dc}Q_c\right)\big|_{c = c} = \frac{1}{1 + c}(Q_c + \frac{1}{4}(1 + c)^2 yQ'_c).$$ \hspace{1cm} (2.5)

$$\int Q^2_c = (1 + c)^2(1 + \frac{1}{2}c) \int Q^2, \quad \int Q^2 = 6, \quad \int (Q'_c)^2 = (1 + c)^2(1 + \frac{1}{2}c)^{-2} \int (Q')^2. \hspace{1cm} (2.6)

(ii) set

$$\phi(x) = -\frac{Q'_c(x)}{Q_c(x)}, \quad \phi_c(x) = -\frac{Q'_c(x)}{Q_c(x)} = \sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}} \phi\left(\sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}}; x\right). \hspace{1cm} (2.7)

We have

$$\lim_{x \to -\infty} \phi_c = -\sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}}, \quad \lim_{x \to +\infty} \phi_c = \sqrt{\frac{1 + c}{1 + \frac{c^2}{4}}}. \hspace{1cm} (2.8)

Lemma 2 Set

$$Lf = -(1 + \frac{1}{2}c)f'' + (1 + c)f - 2Q_c f. \hspace{1cm} (2.9)

(i) The kernel of L is spawned by Q'_c.

(ii) Inverse. For all $h = h(y) \in L^2(R)$ such that $\int_R h Q'_c = 0$, there exists a unique $\hat{h} \in H^2(R)$ such that $\int_R \hat{h} Q'_c = 0$ and $L\hat{h} = h$. Moreover, if h is even (resp. odd), then \hat{h} is even (resp. odd).

Proof. The proofs of Lemma 1 and 2 are similar to the Claim A.2 in the paper [10]. So it is omitted. \hspace{1cm} ■

3 Construction of a soliton-like solution

3.1 Decomposition of the approximate solution

Set

$$T_c = e^{\frac{1}{2}c - \frac{\pi}{1 + \frac{c^2}{4}}}. \hspace{1cm} (3.1)

We look for the $\delta(t, x)$, the approximate solution for (1.1) on the interval of time $[-T_c, T_c]$,

$$y = x - \rho(t), \quad R = \frac{Q_c}{a(\varepsilon\rho(t))}. \hspace{1cm} (3.2)$$

IJNS email for contribution: editor@nonlinearscience.org.uk
Recall the proof where we can get the following results.

\[u = R + w = R + \varepsilon A_c(\varepsilon t, y), \]

where \(A_c(\varepsilon t, x) \) satisfies (IP) property. We want to measure the size of error produced by inserting \(\bar{u}(t, x) \) as defined in (3.4) in the equation of (1.1). For this, let

\[S[\bar{u}] = (1 - \frac{1}{2} \partial^2_x)\bar{u}_t + (\bar{u}_{xx} - \bar{u} + a_c \bar{u}^2)_x. \]

We can get the following results.

Proposition 3 For \(\forall t \in [-T^*_c, T^*_c] \), the nonlinear decomposition of the error term \(S[\bar{u}] \) holds:

\[S[\bar{u}] = \varepsilon[F - (LA_c)_y] + \varepsilon^2[\frac{a''}{2a^2}(y^2Q_c^2)_y + 2\frac{a'}{a}(yA_c)_x + (1 - \frac{1}{2} \partial^2_x)(\Lambda A_c, c' + (A_c)_t)] + O(\varepsilon^2 e^{-\gamma |t|}). \]

where

\[F = (1 - \frac{1}{2} \partial^2_x)Q_c - (1 - \frac{1}{2} \partial^2_x)\frac{a'}{a}Q_c + \frac{a'}{a^2}(y^2Q_c^2)_y. \]

Proof. This proposition is proved explicitly in the next four Lemmas.

Lemma 4 Set

\[S[\bar{u}] = I + II + III. \]

where, \(I = S[R] = (1 - \frac{1}{2} \partial^2_x)R_t + (R_{xx} - R + a_c R^2)_x, \quad II = (1 - \frac{1}{2} \partial^2_x)w_t + (w_{xx} - w + 2a_c w R)_x, \quad III = \{a_c w^2\}_x. \]

Proof. Recall \(\bar{u} = R + w \) and this lemma is just proved by the binomial theorem.

Lemma 5

\[I = \varepsilon \left[\frac{a'}{a}(1 - \frac{1}{2} \partial^2_x)\Lambda Q_c - \frac{a''}{a^2}(1 - \frac{1}{2} \partial^2_x)Q_c + \frac{a'}{a^2}(y^2Q_c^2)_x + \frac{a''}{2a^2}(y^2Q_c^2)_x + O_{H^2}(\varepsilon^3). \right] \]

Proof. By \(y = x - \rho(t), R = \frac{Q_c}{a(\rho(t))} \) and \(\partial_t(\rho(t) = c(t)) \). We have

\[I = (1 - \frac{1}{2} \partial^2_x)(\Lambda Q_c)c\varepsilon - (Q_c)_x + \frac{a''}{a^2}(y^2Q_c^2)_x + \frac{a''}{a^2}(y^2Q_c^2)_x + O_{H^2}(\varepsilon^3). \]

Via a Taylor expansion

\[(a(\varepsilon x)Q_c^2)_x = a(\varepsilon \rho(t))(Q_c)_x + a\varepsilon'(\varepsilon \rho(t))(y^2Q_c^2)_x + \frac{1}{2} \varepsilon^2 a''(\varepsilon \rho(t))(y^2Q_c^2)_x + \frac{1}{6} \varepsilon^3 a'''(\varepsilon(\rho(t) + \theta y))(y^2Q_c^2)_x. \]

In the term of \(a'''(\varepsilon(\rho(t) + \theta y))(y^2Q_c^2)_x \), thus \(|a'''| \leq k, (y^2Q_c^2)_x \in Y \).

So

\[(a(\varepsilon x)Q_c^2)_x = a(\varepsilon \rho(t))(Q_c)_x + a\varepsilon'(\varepsilon \rho(t))(y^2Q_c^2)_x + \frac{1}{2} \varepsilon^2 a''(\varepsilon \rho(t))(y^2Q_c^2)_x + O_{H^2}(\varepsilon^3). \]

Proof. By \(y = x - \rho(t), R = \frac{Q_c}{a(\rho(t))} \) and \(\partial_t(\rho(t) = c(t)) \). We have

\[I = (1 - \frac{1}{2} \partial^2_x)(\Lambda Q_c)c\varepsilon - (Q_c)_x + \frac{a''}{a^2}(y^2Q_c^2)_x + \frac{a''}{a^2}(y^2Q_c^2)_x + O_{H^2}(\varepsilon^3). \]
Lemma 6

\[II = \varepsilon^2 \left(1 - \frac{1}{2} \partial_x^2 \right) (\Lambda \alpha c' \varepsilon + (A_c)_t) + 2 \frac{a'}{a} (y A_c Q)_x - \varepsilon (LA_c)_y + O_{H^2(R)}(\varepsilon^3 e^{-\gamma \varepsilon |t|}). \]

Proof. We compute

\[II = (1 - \frac{1}{2} \partial_x^2)w_t + (w_{xx} - w + 2a_c w R)_x = \varepsilon \left(1 - \frac{1}{2} \partial_x^2 \right) (A_c(\varepsilon t, y))_t + \varepsilon [(A_c)_{yy} - A_c + 2 \frac{a'(\varepsilon x)}{a(\varepsilon \rho)} A_c Q_x]_x. \]

Use the same method, Taylor expansion just like Lemma 5

\[III = \varepsilon^2 (1 - \frac{1}{2} \partial_x^2)(\Lambda \alpha c' \varepsilon + (A_c)_t) + 2 \varepsilon^2 \frac{a'}{a} (y A_c Q)_x + \varepsilon \varepsilon (1 + c) A_c + \left(1 + \frac{1}{2} \partial_x \right) (A_c)_{yy} + 2 Q_c A_c y + O_{H^2(R)}(\varepsilon^3 e^{-\gamma \varepsilon |t|}). \]

Lemma 7

\[III = \{a_c w^2\}_x = \varepsilon^2 \varepsilon (a(x) A^2_c)_x = \varepsilon^2 a'(\varepsilon x) A^2_c + \varepsilon^2 a_c (A^2_c)' = O(\varepsilon^2 e^{-\gamma \varepsilon |t|}). \]

Proof. Note that \((A^2_c)' \in Y \) because (IP) property holds for \(A_c \). So, we can get

\[III = \{a_c w^2\}_x = \varepsilon^2 (a(x) A^2_c)_x = \varepsilon^2 a'(\varepsilon x) A^2_c + \varepsilon^2 a_c (A^2_c)' = O(\varepsilon^2 e^{-\gamma \varepsilon |t|}). \]

Now we collect the estimate from Lemma 4, Lemma 5, and Lemma 6. We finally get

\[S[\bar{u}] = \varepsilon [F - (LA_c)_y] + \varepsilon^2 \left(\frac{a''}{2a^2} (y^2 Q^2_y)_y + 2 \frac{a'}{a} (y A_c Q)_x + (1 - \frac{1}{2} \partial_x^2)(\Lambda \alpha c' + (A_c)_t) + O(\varepsilon^2 e^{-\gamma \varepsilon |t|}). \]

Due to Lemma 4, Lemma 5, and Lemma 6, the Proposition 3 is proved. ■

Note that if we want to improve the approximation \(\bar{u} \), the unknown function \(A_c \) must be chosen such that

\[F - (LA_c)_y = 0, \text{for all } y \in R \quad (\Omega). \]

Then the error term will be reduced to the second order quantity

\[S[\bar{u}] = \varepsilon^2 \left(\frac{a''}{2a^2} (y^2 Q^2_y)_y + 2 \frac{a'}{a} (y A_c Q)_x + (1 - \frac{1}{2} \partial_x^2)(\Lambda \alpha c' + (A_c)_t) \right) + O(\varepsilon^2 e^{-\gamma \varepsilon |t|}). \]

We prove such a solvability result in the next part.

3.2 Resolution of \(\Omega \)

Lemma 8 (Existence theory for \(\Omega \))

Suppose \(F \in Y \) even and satisfying the orthogonality condition

\[\int_R F Q_c = 0. \]

Let \(\beta = \frac{1}{\sqrt{1 + \sqrt{1 + \epsilon}}} \int_R F \), the problem of \(\Omega \) has a bounded solution \(A_c \) of the form \(A_c = \beta \phi_c + \delta + A_1(y) \), with \(A_1(y) \in Y \).

Proof. Let us write \(A_c = \beta \phi_c + \delta + A_1(y) \), where \(\beta, \delta \in R \) and \(A_1(y) \in Y \) are to be determined. We have \(L A_1(y) = H(y) - \beta L \phi_c - \gamma \), where \(H(y) = \int_{-\infty}^{y} F(s) ds \) and \(\gamma = |A_1| - \int_{-\infty}^{y} F(s) ds \).

Without loss of generality, we can suppose the constant term \(\gamma = -\sqrt{1 + \epsilon} \beta \). The problem of \(\Omega \) is solvable if and only
So put these three parts together and from Lemma 1 and Lemma 2 to get orthogonality condition, we impose

$$\int_R |H(y) - \beta(L\phi_c + 1)|Q_c' = \int_R HQ_c' = - \int_R FQ_c = 0.$$

Namely recall that \((LQ_c' = 0)\) thus there exists a solution \(A_1(y)\) satisfying \(\int_R A_1 Q_c = 0\). Since

$$\lim_{y \to -\infty} (H(y) - \beta(L\phi_c + \sqrt{1 + c/1 + 2c})) = 0, \quad \lim_{y \to +\infty} (H(y) - \beta(L\phi_c + \sqrt{1 + c/1 + 2c})) = \int_R F - 2\sqrt{1 + c/1 + 2c}.$$

So we get \(A_1(y) \in Y\) provided \(\beta = \frac{1}{2} \sqrt{1 + \frac{c}{1 + 2c}} \int_R F\). This finishes the proof. ■

According to the Lemma 8, it suffices to verify the orthogonality conditions.

Lemma 9 There exists a solution \(A_c\) of the problem \((\Omega)\) satisfying \((IP)\) and such that

$$A_c = \beta(\phi_c - \sqrt{1 + c/1 + 2c}) + A_1(y), \quad \lim_{y \to +\infty} A_c = 0.$$

$$\beta = \frac{1}{2} \sqrt{1 + \frac{c}{1 + c}} \int_R F \quad \frac{1}{2} \sqrt{1 + \frac{c}{1 + c}} (\frac{c'}{a(1 + c)} - \frac{a'}{a(1 + c)^2}) \int_R Q_c.$$

Proof. We prove this Lemma in next three Lemmas. ■

Lemma 10 (The imposed condition)

To get orthogonality condition \(\int_R FQ_c = 0\), the parameter of \(c, a\) satisfy the following conditions

$$\frac{c'}{\left(\frac{11}{10} + \frac{3}{5}c - \frac{1}{150}(1 + c)^2/2 + 2c\right)} = \frac{a'}{a(1 + c)} - \frac{a'}{a(1 + c)^2} \int_R Q_c' = 0.$$

Proof. Note that

$$F = (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \frac{c'}{a} \Lambda Q_c - (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \frac{a'}{a} \Lambda Q_c + \frac{1}{2} \frac{\partial^2}{a^2} (yQ_c')_y.$$

We just compute these three terms \(\int_R (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \Lambda Q_c, \int_R (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \Lambda Q_c\), and \(\int_R (yQ_c')_y Q_c\).

$$\int_R (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \Lambda Q_c = \int_R (1 + \frac{1}{2} \frac{\partial^2}{a^2}) \Lambda Q_c = \int_R \left(\frac{1}{1 + c} \int_R \left(\frac{1}{2 + c} Q_c + \frac{1}{2 + c} Q_c^2\right)\right) \frac{1}{1 + c} \int_R Q_c' = 0.$$

Note that \(\int Q_c yQ_c' = \frac{1}{2} \int yQ_c^2\) and \(\int Q_c yQ_c^2 = \frac{1}{2} \int yQ_c\) and \(\int Q_c^2 = 0\). So

$$\int_R (1 - \frac{1}{2} \frac{\partial^2}{a^2}) \Lambda Q_c = \int_R \frac{1}{1 + c} \int_R \left(\frac{1}{2 + c} \frac{1}{1 + c} \int_R \left(\frac{1}{2 + c} Q_c + \frac{1}{2 + c} Q_c^2\right)\right) \frac{1}{1 + c} \int_R Q_c' = 0.$$

So put these three parts together and from Lemma 1 and Lemma 2 to get orthogonality condition, we impose

$$\frac{c'}{\left(\frac{11}{10} + \frac{3}{5}c - \frac{1}{150}(1 + c)^2/2 + 2c\right)} = \frac{a'}{a(1 + c)} - \frac{a'}{a(1 + c)^2} \int_R Q_c' = 0.$$

■

Lemma 11

$$\beta = \frac{1}{2} \sqrt{1 + \frac{c}{1 + c}} \int_R F \quad \frac{1}{2} \sqrt{1 + \frac{c}{1 + c}} \frac{c'}{a(1 + c)} (1 - \frac{1}{4} \frac{a'}{a(1 + c)^2} \int_R Q_c.$$
Proof.

\[F = (1 - \frac{1}{2} \partial_x^2) \frac{a'}{a} \Lambda c + (1 - \frac{1}{2} \partial_x^2) \frac{a'}{a} c + \frac{a'}{a^2} (y Q_c^y). \]

We just compute the \(\int (1 - \frac{1}{2} \partial_x^2) \Lambda c \), \(\int (1 - \frac{1}{2} \partial_x^2) Q_c \), and \(\int (y Q_c^y) \). Because \(a, c \) is independent of \(x \).

\[
\int (1 - \frac{1}{2} \partial_x^2) \Lambda c = \frac{1}{1 + c} \int (1 - \frac{1}{2} \partial_x^2) (Q_c + \frac{1}{4} (1 + c)^\frac{3}{2} y Q_c') = \frac{1}{1 + c} \int Q_c - \frac{1}{4} \frac{1 + c)^\frac{3}{2}} { (1 + \frac{1}{2} c)^2} \int Q_c.
\]

Due to \(\int (1 - \frac{1}{2} \partial_x^2) Q_c = \int Q_c - \frac{1}{2} \int Q_c'' = \int Q_c \) and \(\int (y Q_c^y) = 0 \).

\[
\beta = \frac{1}{2} \sqrt{1 + \frac{2}{c}} \left(\frac{c'}{a(1 + c)} (1 - \frac{1}{4} \frac{1 + c)^\frac{3}{2}} { (1 + \frac{1}{2} c)^2} \right) \int Q_c.
\]

Lemma 12

\[
\delta = -\beta \sqrt{\frac{1 + c}{1 + \frac{2}{c}}}
\]

Proof. Finally, to get \(\lim_{y \to +\infty} A_e = 0 \) by Lemma 1, we choose \(\delta = -\beta \sqrt{\frac{1 + c}{1 + \frac{2}{c}}} \).

According to Lemma 9, Lemma 10, and Lemma 11, We have \(A_e = \beta (\phi_c - \sqrt{\frac{1 + c}{1 + \frac{2}{c}}} + A_1(y), A_1 \in Y \), this finishes the proof of Lemma 8. This proves the problem of \(\Omega \).

3.3 Correction to the solution of problem of \(\Omega \)

Consider the cutoff function \(\eta \in C^\infty(R) \) satisfying the following properties,

\[
\begin{align*}
0 \leq \eta(s) &\leq 1, 0 \leq \eta'(s) \leq 1, \forall s \in R, \\
\eta(s) &\equiv 0, \forall s \leq -1, \\
\eta(s) &\equiv 1, \forall s \geq 1.
\end{align*}
\]

(3.8)

Define

\[
\eta_e(y) = \eta(\varepsilon y + 2).
\]

(3.9)

And for \(A_e = A_e(\varepsilon t, y) \) solution of \(\Omega \), denote

\[
A_\# = \eta_e A_e(\varepsilon t, y).
\]

(3.10)

Now redefine

\[
\tilde{u} = R + w = R + \varepsilon A_\#.
\]

(3.11)

The following Proposition, which deals with the error associated to the cutoff function and the new approximate solution \(\tilde{u} \), is the main result.

Proposition 13 There exist constants \(\varepsilon_0, K > 0 \) such that for all \(0 < \varepsilon < \varepsilon_0 \), the following holds.

(i) (a) New behavior. For all \(t \in [-T_\varepsilon, T_\varepsilon] \),

\[
\begin{align*}
A_\#(\varepsilon t, y) = 0, \forall y \leq -\frac{3}{\varepsilon}, \\
A_\#(\varepsilon t, y) = A_e(\varepsilon t, y), \forall y \geq \frac{1}{\varepsilon}.
\end{align*}
\]

(3.12)

(b) Integrable solution. For all \(t \in [-T_\varepsilon, T_\varepsilon] \), \(A_\# \in H^1(R) \) with

\[
\|\varepsilon A_\#\|_{H^1(R)} \leq K \varepsilon^{\frac{1}{2}} e^{-\gamma(\varepsilon)},
\]

(3.13)

(ii) The error associated to the new function \(\tilde{u} \) satisfies

\[
\|S[\tilde{u}]\|_{H^2(R)} \leq K \varepsilon^{\frac{1}{2}} e^{-\gamma(\varepsilon)}.
\]

(3.14)
and the following integral estimate holds
\[\int_R \|S[\tilde{u}]\|_{H^2(R)} \, dt \leq K \epsilon^{\frac{3}{2}}, \] (3.15)

Proof. The proof of first part of this proposition is similar to proof of proposition 13 in [5], so we omit this part. We will prove the second part of this proposition in the next Lemma. \(\blacksquare \)

Lemma 14

\[S[\tilde{u}] = I + II' + III' \]

where
\[II' = -\epsilon\eta_c(LA_c)y + O_{H^2(R)}(\epsilon^{\frac{3}{2}}e^{-\gamma|t|}) \quad \text{and} \quad \|III'\|_{H^2(R)} \leq K \epsilon^2 e^{-\gamma|t|}. \]

Proof.

\[III' = \{a(\epsilon x)w^2\}_x = \epsilon^2(a(\epsilon x)\eta^2_cA^2_c)_x = \epsilon^3a'(\epsilon x)\eta^2_cA^2_c + 2\epsilon^3a(\epsilon x)\eta_c\eta''_cA^2_c + 2\epsilon^3a(\epsilon x)\eta^2_cA_c'A_c'. \]

With \(A_c, A'_c \in Y, \|\eta''_c\|_{L^2(R)} \leq K \epsilon^{-1/2}, \) uniformly \(t \in [-T_c, T_c]. \) Moreover, we have the estimate
\[\|III'\|_{H^2(R)} \leq K \epsilon^2 e^{-\gamma|t|}. \]

Note that
\[(1 - \frac{1}{2}\frac{\partial^2}{\partial t^2})(\epsilon A\#)_t = \epsilon(1 - \frac{1}{2}\frac{\partial^2}{\partial t^2})(-\epsilon \eta_cA_c - c(A_c)y\eta_c + \epsilon(A_c)\eta_c - \epsilon\eta_cLA_c') = \epsilon^2(1 - \frac{1}{2}\frac{\partial^2}{\partial t^2})(-\epsilon \eta_cA_c + (A_c)\eta_c - \epsilon\eta_cLA_c') - \epsilon(1 - \frac{1}{2}\frac{\partial^2}{\partial t^2})(\epsilon(A_c)y\eta_c). \]

Thus
\[(\epsilon A\#)_{xx} - \epsilon A\# + 2a_x\epsilon A\# R)_{x} = (\epsilon\eta_cA_c x - \epsilon\eta_cA_c + 2a_xR\eta_cA_c)_x = \epsilon(\eta_c(A_c)_{yy} + 2\eta''_c(A_c)_{y} + \epsilon^2\eta''_c(A_c) - \epsilon\eta_cA_c + 2a_xR\eta_cA_c)_x = \epsilon\eta_c((A_c)_{yy} - A_c + 2\frac{a(\epsilon x)}{a(\epsilon \rho)}Q_cA_c)_x + \epsilon^2(2\eta''_c(A_c)_{y} + \epsilon\eta''_cA_c)_y = \epsilon\eta_c((A_c)_{yy} - A_c + 2\frac{a(\epsilon x)}{a(\epsilon \rho)}Q_cA_c)_x + \epsilon^2(2\eta''_c(A_c)_{y} + \epsilon\eta''_cA_c)_y + \epsilon^2(3\eta''_c(A_c)_{y} + 3\eta''_cA_c - A_c + 2\frac{a(\epsilon x)}{a(\epsilon \rho)}Q_cA_c)_x = \epsilon\eta_c((A_c)_{yy} - A_c + 2Q_cA_c)_x + \epsilon^2(2\eta''_c(A_c)_{y} + \epsilon\eta''_cA_c)_y + \epsilon^2(3\eta''_c(A_c)_{y} + 3\eta''_cA_c - A_c + 2\frac{a(\epsilon x)}{a(\epsilon \rho)}Q_cA_c)_x + O(\epsilon^3\eta_c(y^2Q_cA_c)_y). \]

From the (IP) property to estimate as follows
\[\left\| 2\epsilon^2\eta_c\frac{a'(\epsilon x)}{a(\epsilon \rho)}(yQ_cA_c)_y \right\|_{H^2(R)} \leq K \epsilon^2 e^{-\gamma|t|} \left\| O(\epsilon^3\eta_c(y^2Q_cA_c)_y) \right\|_{H^2(R)} \leq K \epsilon^3. \]
\[\left\| \epsilon^4\eta''_cA_c \right\|_{H^2(R)} \leq \epsilon^2 e^{-\gamma|t|}, \left\| \epsilon^2\eta''_cA_c \right\|_{H^2(R)} \leq K \epsilon^3 e^{-\gamma|t|}, \left\| \epsilon^2(3\epsilon^2\eta''_c(A_c)_y + 3\eta''_c(A_c)_{yy} + 2\eta''_cQ_cA_c) \right\|_{H^2(R)} \leq K \epsilon^2 e^{-\gamma|t|}. \]

JINS homepage: http://www.nonlinearscience.org.uk/
Therefore
\[
((\varepsilon A_x)_x - \varepsilon A_y + 2a\varepsilon A_x R)_x = \varepsilon \eta_c [(A_c)_{yy} - A_c + 2Q_c A_c]_x + O_{H^2(R)}(\varepsilon^{\frac{3}{2}} e^{-\gamma|t|} + \varepsilon^3).
\]
So, we get
\[
II' = -\varepsilon \eta_c (LA_c)_y + O_{H^2(R)}(\varepsilon^{\frac{3}{2}} e^{-\gamma|t|}).
\]

Note that
\[
S[\tilde{u}] = \varepsilon [F - \eta_c (LA_c)]_y + O_{H^2(R)}(\varepsilon^{\frac{3}{2}} e^{-\gamma|t|}) = \varepsilon (1 - \eta_c) F + O_{H^2(R)}(\varepsilon^{\frac{3}{2}} e^{-\gamma|t|}).
\]
For every \(t \in [-T, T]\), \(1 - \eta_c \subseteq (-\infty, -\frac{1}{2})\), \(\|F\|_{H^2(R)} \leq Ke^{-\gamma|y| - \gamma|t|}\).
So we gain
\[
\|\varepsilon (1 - \eta_c) F\|_{H^2(R)} \leq Ke^{-\frac{\gamma}{4} - e^{-\gamma|t|}} < K\varepsilon^{10}.
\]
\[
\|S[\tilde{u}]\|_{H^2(R)} \leq K\varepsilon^{\frac{3}{2}} e^{-\gamma|t|}.
\]

(3.15) is just from integration of the formula of (3.14).
\[
\int_R \|S[\tilde{u}]\|_{H^2(R)} dt \leq K\varepsilon^{\frac{3}{2}}.
\]
This finishes the second proof of Proposition 3.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (No: 11171135, 51276081), and the Major Project of Natural Science Foundation of Jiangsu Province Colleges and Universities (14KJA110001), Natural Science Foundation of University of Jiangsu Province (No: BK20140525) and Senior talents Foundation of Jiangsu University (No: 14JDG070).

References