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Abstract: In this paper, we consider the soliton dynamics on the potential internal for the BBM equation
under a slowly varying medium. We construct an approximate solution for this equation and prove that the
error term due to the approximate solution can be controlled.
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1 Introduction
In this work, we consider the following BBM equation under slowly varying medium,

(1− 1

2
∂2
x)ut + (uxx − u+ aεu

2)x = 0, (t, x) ∈ Rt × Rx. (1.1)

Here u = u(t, x) is a real-valued function and aε = a(εx) satisfies the following conditions. There exist constants
K, γ > 0 such that  1 < a(r) < 2, a′(r) > 0, ∀r ∈ R,

0 < a(r)− 1 < Keγr, ∀r ≤ 0,
0 < 2− a(r) < Ke−γr, ∀r > 0.

(1.2)

In particular, lim
r→−∞

a(r) = 1 and lim
r→+∞

a(r) = 2.

We construct the approximate solution of the equation on the internal of [−Tε, Tε] and then prove that the error term
due to the approximate solution can be controlled under O(ε

3
2 e−γε|t|).

Many relevant works have been done. Kaup and Newell [1] considered the study of perturbations of integrable e-
quations, in particular, they considered the perturbed gKdV equation. Grimshaw [2,3] introduced slowly varying solitary
waves for the Korteweg-de-Vries equation and nonlinear Schrödinger equation. K.Ko and H.H.Kuehl [4] had a research
on the Korteweg-de Vries equation with slowly varying coefficients for a soliton initial condition. Recently, C. Muñoz
made many contributions to this work. He [5-7] researched the soliton dynamics under a slowly varying medium and
inelastic character of solitons for generalized KdV equations. At the same time, Muñoz [8,9] studied the soliton dynamics
and sharp inelastic character under slowly varying medium for nonlinear Schrödinger equations.

2 Preliminaies

2.1 Soliton solution of BBM equation
Recall the so-called Benjamin-Bona-Mahony equation,

(1− 1

2
∂2
x)ut + (uxx − u+ u2)x = 0, t, x ∈ R. (2.1)
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This equation has the soliton solutions as follows:

u(t, x) = Qc(x− ct), Qc = (1 + c)Q(

√
1 + c

1 + 1
2c

x). (2.2)

where Q(x) = 3
2 cosh

−2(x2 ), solves Q′′+Q2 = Q. (2.3)

2.2 Definition of (IP) property
We say that Ac(εt, x) satisfies the (IP) property if and only if :

(i) Any spatial derivative of Ac(εt, x) is a localized Y -function.
(ii) There exists K, γ > 0 such that ∥Ac(εt, x)∥L∞(R) ≤ Ke−γε|t| for all t ∈ R.

Y -function means the set of functions f ∈ C∞(R,R) such that

∀j ∈ N, ∃Cj , rj > 0, ∀x ∈ R,
∣∣∣f (j)(x)

∣∣∣ ≤ Cj(1 + |x|)rje−|x|.

2.3 The characters of Qc and the properties of the new operator L

Lemma 1 For Qc = (1 + c)Q(
√

1+c
1+ 1

2 c
x).

(i)

(1 +
1

2
c)Q′′

c +Q2
c = (1 + c)Qc, ΛQc = (

d

dc′
Qc)|c′=c =

1

1 + c
(Qc +

1

4

(1 + c)
1
2

(1 + 1
2c)

3
2

yQ′
c). (2.4)∫

Q2
c = (1 + c)

3
2 (1 +

1

2
c)

1
2

∫
Q2,

∫
Q2 = 6,

∫
(Q′

c)
2 = (1 + c)

5
2 (1 +

1

2
c)−

1
2

∫
(Q′)2. (2.5)

r

∫
Qr =

2r + 1

3

∫
Qr+1, r

∫
Qr

c =
2r + 1

3(1 + c)

∫
Qr+1

c ,

∫
ΛQc = [

1

1 + c
− 1

4

(1 + c)
1
2

(1 + 1
2c)

3
2

]

∫
Qc. (2.6)

(ii)set

ϕ(x) = −Q′(x)

Q(x)
, ϕc(x) = −Q′

c(x)

Qc(x)
=

√
1 + c

1 + 1
2c

ϕ(

√
1 + c

1 + 1
2c

x). (2.7)

We have

lim
x→−∞

ϕc = −
√

1 + c

1 + 1
2c

, lim
x→+∞

ϕc =

√
1 + c

1 + 1
2c

. (2.8)

Lemma 2 Set
Lf = −(1 +

1

2
c)f ′′ + (1 + c)f − 2Qcf. (2.9)

(i)The kernel of L is spawned by Q′
c.

(ii)Inverse. For all h = h(y) ∈ L2(R) such that
∫
R
hQ′

c = 0, there exists a unique ĥ ∈ H2(R) such that
∫
R
ĥQ′

c = 0

and Lĥ = h. Moreover, if h is even (resp.odd), then ĥ is even(resp.odd).

Proof. The proofs of Lemma 1 and 2 are similar to the Claim A.2 in the paper [10]. So it is omitted.

3 Construction of a soliton-like solution

3.1 Decomposition of the approximate solution
Set

Tε = ε−1− 1
100 . (3.1)

We look for the ũ(t, x) , the approximate solution for (1.1) on the interval of time [−Tε, Tε],

y = x− ρ(t), R =
Qc

a(ερ(t))
. (3.2)
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where

Qc = (1 + c)Q(

√
1 + c

1 + 1
2c

(x− ρ(t))), ρ(t) =

∫ t

−Tε

c(εs)ds−Tε. (3.3)

The form of ũ(t, x) will be the sum of the soliton plus a correction term:

ũ = R+ w = R+ εAc(εt, y), (3.4)

where Ac(εt, x) satisfies (IP) property. We want to measure the size of error produced by inserting ũ(t, x) as defined in
(3.4) in the equation of (1.1). For this, let

S[ũ] = (1− 1

2
∂2
x)ũt + (ũxx − ũ+ aεũ

2)x. (3.5)

We can get the following results.

Proposition 3 For ∀t ∈ [−Tε, Tε], the nonlinear decomposition of the error term S[ũ] holds:

S[ũ] = ε[F − (LAc)y] + ε2[
a′′

2a2
(y2Q2

c)y + 2
a′

a
(yAcQ)x + (1− 1

2
∂2
x)(ΛAcc

′ + (Ac)t)] +O(ε2e−γε|t|). (3.6)

where F = (1− 1
2∂

2
x)

c′

a ΛQc − (1− 1
2∂

2
x)

a′

a2 cQc +
a′

a2 (yQ
2
c)y. (3.7)

Proof. This proposition is proved explicitly in the next four Lemmas.

Lemma 4 Set
S[ũ] = I + II + III.

where, I = S[R] = (1− 1
2∂

2
x)Rt+(Rxx−R+aεR

2)x, II = (1− 1
2∂

2
x)wt+(wxx−w+2aεwR)x, III = {aεw2}x.

Proof. Recall ũ = R+ w and this lemma is just proved by the binomial theorem.

Lemma 5

I = ε[
c′

a
(1− 1

2
∂2
x)ΛQc −

a′c

a2
(1− 1

2
∂2
x)Qc +

a′

a2
(yQ2

c)x] + ε2
a′′

2a2
(y2Q2

c)x +OH2(R)(ε
3).

Proof. By y = x− ρ(t), R = Qc

a(ερ(t)) and ∂tρ(t) = c(εt). We have

I = (1− 1

2
∂2
x)Rt + (Rxx −R+ aεR

2)x

= (1− 1

2
∂2
x)

(ΛQcc
′ε−Q′

cc)a−Qca
′εc

a2
+

1

a
Q′′′

c − Q′
c

a
+

1

a2
(a(εx)Q2

c).

Via a Taylor expansion

(a(εx)Q2
c)x = a(ερ(t))(Q2

c)x + εa′(ερ(t))(yQ2
c)x +

1

2
ε2a′′(ερ(t))(y2Q2

c)x +
1

6
ε3a′′′(ε(ρ(t) + θy))(y3Q2

c)x.

In the term of a′′′(ε(ρ(t) + θy))(y3Q2
c)x, thus |a′′′| ≤ k , (y3Q2

c)x ∈ Y.
So

(a(εx)Q2
c)x = a(ερ(t))(Q2

c)x + εa′(ερ(t))(yQ2
c)x +

1

2
ε2a′′(ερ(t))(y2Q2

c)x +OH2(R)(ε
3).

I =
(ΛQcc

′ε−Q′
cc)a−Qca

′εc

a2
− 1

2

(ΛQ′′
c c

′ε−Q′′′
c c)a−Q′′

ca
′εc

a2

+
1

a
Q′′′

c − Q′
c

a
+

1

a2
[a(Q2

c)x + εa′(yQ2
c)x +

1

2
ε2a′′(y2Q2

c)x +OH2(R)(ε
3).

I =
1

a
(Q2

c − (1 + c)Qc + (1 +
1

2
c)Q′′

c )
′
+ ε[

c′

a
(1− 1

2
∂2
x)ΛQc −

a′c

a2
(1− 1

2
∂2
x)Qc +

a′

a2
(yQ2

c)x]

+ ε2
a′′

2a2
(y2Q2

c)x +OH2(R)(ε
3).

I = ε[
c′

a
(1− 1

2
∂2
x)ΛQc −

a′c

a2
(1− 1

2
∂2
x)Qc +

a′

a2
(yQ2

c)x] + ε2
a′′

2a2
(y2Q2

c)x +OH2(R)(ε
3).

IJNS homepage: http://www.nonlinearscience.org.uk/



124 International Journal of Nonlinear Science, Vol.19(2015), No.2, pp.121-128

Lemma 6

II = ε2[(1− 1

2
∂2
x)(ΛAcc

′ε+ (Ac)t) + 2
a′

a
(yAcQ)x]− ε(LAc)y +OH2(R)(ε

3e−γε|t|).

Proof. We compute

II = (1− 1

2
∂2
x)wt + (wxx − w + 2aεwR)x = ε(1− 1

2
∂2
x)(Ac(εt, y))t + ε[(Ac)yy −Ac + 2

a(εx)

a(ερ)
AcQc]x.

Use the same method, Taylor expansion just like Lemma 5

II = ε(1− 1

2
∂2
x)[ΛAcc

′ε+ (Ac)tε− (Ac)yc] + ε[(Ac)yy −Ac + 2AcQc + 2ε
a′

a
yAcQc]x +OH2(R)(ε

3e−γε|t|)

= ε2(1− 1

2
∂2
x)(ΛAcc

′ε+ (Ac)t) + 2ε2
a′

a
(yAcQ)x + ε[−(1 + c)Ac + (1 +

1

2
c)(Ac)yy + 2QcAc]y

+ OH2(R)(ε
3e−γε|t|)

= ε2[(1− 1

2
∂2
x)(ΛAcc

′ε+ (Ac)t) + 2
a′

a
(yAcQ)x]− ε(LAc)y +OH2(R)(ε

3e−γε|t|).

Lemma 7
III = {aεw2}x = ε2(a(εx)A2

c)x = ε3a′(εx)A2
c + ε2aε(A

2
c)

′
= O(ε2e−γε|t|).

Proof. Note that (A2
c)

′ ∈ Y because (IP) property holds for Ac. So, we can get

III = {aεw2}x = ε2(a(εx)A2
c)x = ε3a′(εx)A2

c + ε2aε(A
2
c)

′
= O(ε2e−γε|t|).

Now we collect the estimate from Lemma 4, Lemma 5, and Lemma 6. We finally get

S[ũ] = ε[F − (LAc)y] + ε2[
a′′

2a2
(y2Q2

c)y + 2
a′

a
(yAcQ)x + (1− 1

2
∂2
x)(ΛAcc

′ + (Ac)t)] +O(ε2e−γε|t|).

Due to Lemma 4, Lemma 5, and Lemma 6, the Proposition 3 is proved.
Note that if we want to improve the approximation ũ,the unknown function Ac must be chosen such that

F − (LAc)y = 0, for all y ∈ R (Ω).
Then the error term will be reduced to the second order quantity

S[ũ] = ε2[
a′′

2a2
(y2Q2

c)y + 2
a′

a
(yAcQ)x + (1− 1

2
∂2
x)(ΛAcc

′ + (Ac)t)] +O(ε2e−γε|t|).

We prove such a solvability result in the next part.

3.2 Resolution of Ω
Lemma 8 (Existence theory for Ω )
Suppose F ∈ Y even and satisfying the orthogonality condition∫

R

FQc = 0.

Let β = 1
2

√
1+ 1

2 c

1+c

∫
R
F , the problem of Ω has a bounded solution Ac of the form Ac = βϕc+δ+A1(y), with A1(y) ∈ Y .

Proof. Let us write Ac = βϕc + δ + A1(y), where β, δ ∈ R and A1(y) ∈ Y are to be determined. We have
LA1(y) = H(y)− βLϕc − γ, where H(y) =

∫ y

−∞ F (s)ds and γ = LA1(0)−
∫ 0

−∞ F (s)ds.

Without loss of generality , we can suppose the constant term γ = −
√

1+c
1+ 1

2 c
β. The problem of Ω is solvable if and only
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if ∫
R

[H(y)− β(Lϕc + 1)]Q′
c =

∫
R

HQ′
c = −

∫
R

FQc = 0.

Namely recall that (LQ′
c = 0) thus there exists a solution A1(y) satisfying

∫
R
A1Q

′
c = 0.

Since

lim
y→−∞

(H(y)− β(Lϕc +

√
1 + c

1 + 1
2c

)) = 0, lim
y→+∞

(H(y)− β(Lϕc +

√
1 + c

1 + 1
2c

)) =

∫
R

F − 2

√
1 + c

1 + 1
2c

β.

So we get A1(y) ∈ Y provided β = 1
2

√
1+ 1

2 c

1+c

∫
R
F . This finishes the proof.

According to the Lemma 8, it suffices to verify the orthogonality conditions.

Lemma 9 There exists a solution Ac of the problem (Ω) satisfying (IP) and such that

Ac = β(ϕc −
√

1 + c

1 + 1
2c

) +A1(y), lim
y→+∞

Ac = 0.

β =
1

2

√
1 + c

2

1 + c

∫
R

F =
1

2

√
1 + c

2

1 + c
(

c′

a(1 + c)
(1− 1

4

(1 + c)
1
2

(1 + c
2 )

3
2

)− a′

a2
c)

∫
Qc.

Proof. We prove this Lemma in next three Lemmas.

Lemma 10 (The imposed condition)
To get orthogonality condition

∫
R
FQc = 0, the parameter of c, a satisfy the following conditions

c′[(
11

10
+

3

5
c− 1

40

(1 + c)
1
2

(1 + c
2 )

3
2

(
9

2
+ 2c)]− a′

a
[c(1 + c)(

11

10
+

3

5
c)− 2

5
(1 + c)2(1 +

c

2
)] = 0.

Proof. Note that

F = (1− 1

2
∂2
x)

c′

a
ΛQc − (1− 1

2
∂2
x)

a′

a2
cQc +

a′

a2
(yQ2

c)y.

We just compute these three terms
∫
R
(1− 1

2∂
2
x)ΛQQc,

∫
R
(1− 1

2∂
2
x)QcQc and

∫
R
(yQ2

c)yQc.∫
R

(1− 1

2
∂2
x)ΛQQc =

∫
R

(1− 1

2
∂2
x)QcΛQc =

1

1 + c

∫
(

1

2 + c
Qc +

1

2 + c
Q2

c)(Qc +
1

4

(1 + c)
1
2

(1 + 1
2c)

3
2

yQ′
c).

Note that
∫
QcyQ

′
c =

1
2

∫
yd(Q2

c) = −1
2

∫
Q2

c and
∫
Q2

cyQ
′
c =

1
3

∫
yd(Q3

c) = − 1
3

∫
Q3

c .
So ∫

R

(1− 1

2
∂2
x)ΛQQc =

1

1 + c
[

∫
(

1

2 + c
− 1

8

(1 + c)
1
2

(1 + 1
2c)

5
2

)Q2
c + (

1

2 + c
− 1

24

(1 + c)
1
2

(1 + 1
2c)

5
2

)Q3
c .∫

R

(1− 1

2
∂2
x)QcQc =

∫
[Qc(Qc −Q′′

c )] =

∫
1

2 + c
Q2

c +
1

2 + c
Q3

c).∫
R

(yQ2
c)yQc =

∫
R

Qcd(yQ
2
c) = −

∫
R

yQ2
cd(Qc) =

1

3

∫
R

Q3
c .

So put these three parts together and from Lemma 1 and Lemma 2 to get orthogonality condition, we impose

c′[(
11

10
+

3

5
c− 1

40

(1 + c)
1
2

(1 + c
2 )

3
2

(
9

2
+ 2c)]− a′

a
[c(1 + c)(

11

10
+

3

5
c)− 2

5
(1 + c)2(1 +

c

2
)] = 0.

Lemma 11

β =
1

2

√
1 + c

2

1 + c

∫
R

F =
1

2

√
1 + c

2

1 + c
(

c′

a(1 + c)
(1− 1

4

(1 + c)
1
2

(1 + c
2 )

3
2

)− a′

a2
c)

∫
Qc.
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Proof.
F = (1− 1

2
∂2
x)

c′

a
ΛQc − (1− 1

2
∂2
x)

a′

a2
cQc +

a′

a2
(yQ2

c)y.

We just compute the
∫
(1− 1

2∂
2
x)ΛQc,

∫
(1− 1

2∂
2
x)Qcand

∫
(yQ2

c)y . Because a, c is independent of x.

∫
(1− 1

2
∂2
x)ΛQc =

1

1 + c

∫
(1− 1

2
∂2
x)(Qc +

1

4

(1 + c)
1
2

(1 + 1
2c)

3
2

yQ′
c) =

1

1 + c
[

∫
Qc −

1

4

(1 + c)
1
2

(1 + 1
2c)

3
2

∫
Qc].

Due to
∫
(1− 1

2∂
2
x)Qc =

∫
Qc − 1

2

∫
Q′′

c =
∫
Qc and

∫
(yQ2

c)y = 0.

β =
1

2

√
1 + c

2

1 + c
(

c′

a(1 + c)
(1− 1

4

(1 + c)
1
2

(1 + c
2 )

3
2

)− a′

a2
c)

∫
Qc.

Lemma 12

δ = −β

√
1 + c

1 + 1
2c

.

Proof. Finally, to get lim
y→+∞

Ac = 0 by Lemma 1, we choose δ = −β
√

1+c
1+ 1

2 c
.

According to Lemma 9, Lemma 10, and Lemma 11, We have Ac = β(ϕc −
√

1+c
1+ 1

2 c
) + A1(y), A1 ∈ Y , this finishes the

proof of Lemma 8.This proves the problem of Ω.

3.3 Correction to the solution of problem of (Ω)
Consider the cutoff function η ∈ C∞(R) satisfying the following properties, 0 ≤ η(s) ≤ 1, 0 ≤ η′(s) ≤ 1,∀s ∈ R,

η(s) ≡ 0,∀s ≤ −1,
η(s) ≡ 1,∀s ≥ 1.

(3.8)

Define
ηε(y) = η(εy + 2). (3.9)

And for Ac = Ac(εt, y) solution of Ω , denote

A# = ηεAc(εt, y). (3.10)

Now redefine
ũ = R+ w = R+ εA#. (3.11)

The following Proposition, which deals with the error associated to the cutoff function and the new approximate solution
ũ , is the main result.

Proposition 13 There exist constants ε0,K > 0 such that for all 0 < ε < ε0, the following holds.
(i) (a)New behavior. For all t ∈ [−Tε, Tε],{

A#(εt, y) = 0, ∀y ≤ − 3
ε ,

A#(εt, y) = Ac(εt, y),∀y ≥ 1
ε .

(3.12)

(b)Integrable solution. For all t ∈ [−Tε, Tε] ,A# ∈ H1(R) with

∥εA#∥H1(R) ≤ Kε
1
2 e−γε|t|. (3.13)

(ii)The error associated to the new function ũ satisfies

∥S[ũ]∥H2(R) ≤ Kε
3
2 e−γε|t|. (3.14)
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and the following integral estimate holds ∫
R

∥S[ũ]∥H2(R) dt ≤ Kε
1
2 . (3.15)

Proof. The proof of first part of this proposition is similar to proof of proposition 13 in [5], so we omit this part. We will
prove the second part of this proposition in the next Lemma.

Lemma 14
S[ũ] = I + II ′ + III ′ .

where

II ′ = −εηc(LAc)y +OH2(R)(ε
3
2 e−γε|t|) , ∥III ′∥H2(R) ≤ Kε2e−γε|t|.

Proof.

III ′ = {a(εx)w2}x = ε2(a(εx)η2cA
2
c)x = ε3a′(εx)η2cA

2
c + 2ε3a(εx)ηcη

′
cA

2
c + 2ε2a(εx)η2cAcA

′
c.

With Ac, A
′
c ∈ Y ,∥η′c∥L2(R) ≤ Kε−1/2 , uniformly t ∈ [−Tε, Tε].Moreover ,we have the estimate

∥III ′∥H2(R) ≤ Kε2e−γε|t|.

Note that

(1− 1

2
∂2
x)(εA#)t = ε(1− 1

2
∂2
x)(−εcη′εAc − c(Ac)yηε + ε(Ac)tηε − εηεΛAcc

′)

= ε2(1− 1

2
∂2
x)(−cη′εAc + (Ac)tηε − ηεΛAcc

′)− ε(1− 1

2
∂2
x)(c(Ac)yηε).

Thus

((εA#)xx − εA# + 2aεεA#R)x

= ((εηεAc)xx − εηεAc + 2εaεRηεAc)x

= ε[(ηε(Ac)yy + 2εη′ε(Ac)y + ε2η′′εAc)− εηεAc + 2εaεRηεAc]x

= ε[ηε((Ac)yy −Ac + 2
a(εx)

a(ερ)
QcAc)]x + ε2(2η′ε(Ac)y + εη′′εAc)y

= εηε[(Ac)yy −Ac + 2
a(εx)

a(ερ)
QcAc]x + ε2η′ε((Ac)yy −Ac + 2

a(εx)

a(ερ)
QcAc)

+ ε2(2εη′′ε (Ac)y + 2η′ε(Ac)yy + εη′′ε (Ac)y + ε2η′′′ε Ac)

= εηε[(Ac)yy −Ac + 2
a(εx)

a(ερ)
QcAc]x + ε2(3εη′′ε (Ac)y + 3η′ε(Ac)yy + ε2η′′′ε Ac −Ac + 2

a(εx)

a(ερ)
QcAc)

= εηε[(Ac)yy −Ac + 2QcAc]x + 2ε2ηε
a′

a
(yQcAc)y

+ ε2(3εη′′ε (Ac)y + 3η′ε(Ac)yy + ε2η′′′ε Ac − η′εAc + 2η′εQcAc) +O(ε3ηε(y
2QcAc)y).

From the (IP) property to estimate as follows∥∥∥∥2ε2ηε a′a (yQcAc)y

∥∥∥∥
H2(R)

≤ Kε2e−γε|t| ∥∥O(ε3ηε(y
2QcAc)y)

∥∥
H2(R)

≤ Kε3.

∥∥ε4η′′′ε Ac

∥∥
H2(R)

≤ ε
7
2 e−γε|t|,

∥∥ε2η′εAc

∥∥
H2(R)

≤ Kε
3
2 e−γε|t|.∥∥ε2(3εη′′ε (Ac)y + 3η′ε(Ac)yy + 2η′εQcAc)

∥∥
H2(R)

≤ Kε2e−γε|t|.
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Therefore

((εA#)xx − εA# + 2aεεA#R)x = εηε[(Ac)yy −Ac + 2QcAc]x +OH2(R)(ε
3
2 e−γε|t| + ε3).

So, we get

II ′ = −εηc(LAc)y +OH2(R)(ε
3
2 e−γε|t|).

Note that

S[ũ] = ε[F − ηε(LAc)y] +OH2(R)(ε
3
2 e−γε|t|) = ε(1− ηε)F +OH2(R)(ε

3
2 e−γε|t|).

For every t ∈ [−Tε, Tε], 1− ηε ⊆ (−∞,−1
ε ), ∥F∥H2(R) ≤ Ke−γ|y|−γε|t|.

So we gain
∥ε(1− ηε)F∥H2(R) ≤ Ke−

1
ε−γε|t| << Kε10.

∥S[ũ]∥H2(R) ≤ Kε
3
2 e−γε|t|.

(3.15) is just from integration of the formula of (3.14).∫
R

∥S[ũ]∥H2(R) dt ≤ Kε
1
2 .

This finishes the second proof of Proposition 3.
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