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Abstract: In this paper, we investigate the first integral method for solving the generalized Benjamin-Bona-
Mahony (BBM) equation. This idea can obtain some exact solutions of this equations based on the theory of
Commutative algebra.
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1 Introduction
In recent years, the investigation of exact solutions to nonlinear partial differential equations has played an important
role in nonlinear phenomena. Nonlinear phenomena appear in a wide variety of scientific applications such as plasma
physics, solid state physics, nonlinear optics, quantum field theory and fluid dynamics. In order to better understand these
nonlinear phenomena, many mathematicians and physical scientists make efforts to seek more exact solutions to them.
Several powerful methods have been proposed to obtain exact solutions of nonlinear partial differential equations, such as
the Bäcklund transformation method [7, 11, 16], Hirotas direct method [15], tanh-sech method [6], extended tanh method
[3, 36], the exp- function method [17, 18, 37], sine-cosine method [9, 12, 43], Jacobi elliptic function expansion method
[19], F-expansion method [24] and so on .

The first integral method was first proposed in [4] in solving Burgers- KdV equation which is based on the ring theory
of commutative algebra.The useful first integral method is widely used in many papers such as in Refs.[4, 38–40] and the
reference therein. The present work is interested in generalized Benjamin-Bona-Mahony (BBM) equation [30]:

ut + αux + (βun + cu2n) + kuxxx = 0. (1)

In the above equation, the first term of left side represents the evolution term while parameters β and c represent the
coefficients of dual-power law nonlinearity, α and k are the coefficients of dispersion terms, n is the power law parameter,
and variable u is the wave profile. In [31] , Biswas used the solitary wave ansatz and obtained an exact 1-soliton solution
of (1). In order to find more exact solutions of some nonlinear evolutionary equations, Kuru [32, 33] discussed the BBM-
like equation, and Estévez et al. [34] analyzed another type of generalized BBM equations. In this work, we use the first
integral method to find the exact solutions of the generalized Benjamin-Bona-Mahony equation.
The rest of this paper is organized as follows : Section 2 is a brief introduction to the first integral method. In section 3,
we apply the first integral method to find exact solutions of the generalized Benjamin-Bona-Mahony equation.

2 The First Integral Method.
Consider a general nonlinear partial differential equation (PDF) in the form

P (u, ut, ux, uxx, uxt, utt, ...) = 0, (2)
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where u(x, t) is the solution of nonlinear partial differential equation (2). By means of the transformation

u(x, t) = U(ξ), ξ = (x− λt), (3)

where λ is arbitrary constants, we reduce eq (2)to an ordinary differential equation (ODE) of the form

P (u, u
′
, u

′′
, u

′′′
, ...) = 0, (4)

where u(x, t) = u(ξ) and the primes denote ordinary derivatives with respect to ξ. Next, we introduce a new independent
variable

V (ξ) = u(ξ), W (ξ) = u
′
(ξ), (5)

which leads to a system of ODEs of the form{
V

′
(ξ) = W (ξ),

W ′(ξ) = H(V (ξ),W (ξ)).
(6)

According to the qualitative theory of ordinary differential equations [2], if we can find two first integrabls to system
(6) under the same conditions, then analytic solutions to (6) can be solved directly. However, in general, it is realty
difficult to realize this even for a single first integral, because for a given plane autonomous system, there is no general
theory telling us how ti find it’s first integrals in a systematic way. A key idea of our approach here to find first integral is
to utilize the division theorem . For convenience, first let us recall the Division theorem for two variables in the complex
domain C [4].

Theorem 1 (Division theorem) Suppose that P (ω, z) and Q(ω, z) are polynomials in C[ω, z], and that P (ω, z) is irre-
ductible C[ω, z]. If Q(ω, z) vanishes at any zero point of P (ω, z), then there exists a polynomial G(ω, z) in C[ω, z] such
that

Q(ω, z) = P (ω, z).G(ω, z). (7)

3 The generalized Benjamin-Bona-Mahony (BBM) equation [30]
Assume that equation (1) has the solution of the form:

u(x, t) = u(ξ), ξ = (x− νt). (8)

where ν is arbitrary constant. Substituting (8) into (1) we obtain

(α− ν)u
′
+ (βun + cu2n)u

′
+ ku

′′′
= 0, (9)

where prime denotes derivative with respect to ξ. Integrating the equation of (9) with respect to ξ and taking the integration
constants to zero yields:

(α− ν)u+
β

n+ 1
un+1 +

c

2n+ 1
u2n+1 + ku

′′
= 0, (10)

Making the following transformation:

v = un, (11)

then (10) becomes

v
′′
− av + b

(v
′
)2

v
+ dv2 + fv3 = 0, (12)

where

a = n(α−ν)
k , b = 1−n

n ,

d = nβ
k(n+1) , f = nc

k(2n+1) .
(13)

IJNS homepage: http://www.nonlinearscience.org.uk/



42 International Journal of Nonlinear Science, Vol.19(2015), No.1, pp.40-46

and v
′

and v
′′

denote dv
dξ andd2v

dξ2 , respectively. and the prime denotes derivative with respect to ξ. Next, we introduce new

independent variables u = z, u
′
= ω. Then equation (12) can be rewritten as the two-dimensional autonomous system{

dz
dξ = ω,
dω
dξ = az − bω

2

z − dz2 − fz3.
(14)

Assume that

dξ

z
= dτ (15)

thus system becomes {
dz
dτ = zω,
dω
dτ = az2 − bω2 − dz3 − fz4.

(16)

Now, we apply the Division Theorem to seek the first integral to (14). Suppose that z = z(τ) and ω = ω(τ) are the

nontrivial solutions to (16), and p(ω, z) =
r∑

i = 0
ai(z)ω

i, is irreducible polynomial in C[ω, z] such that

p(ω(τ), z(ξ)) =
r∑

i = 0
ai(z(τ))ω

i(τ) = 0, (17)

where ai(z) (i = 0, 1, ..., r) are polynomials of z and all relatively prime in C[ω, z], ar(z) ̸= 0. Equation (17) is also
called the first integral to (16). We start our study by assuming r = 1 in (17). Note that dp

dτ is polynomial in z and ω, and
p(ω(τ), z(τ)) = 0 implies dp

dτ |(16)= 0. By the Division Theorem, the exists a polynomial H(z, ω) = h(z) + g(z)ω in
C[ω, z] such that

dp
dτ |(16)= (∂p∂z

∂z
∂τ + ∂p

∂ω
∂ω
∂τ |(16)

=
∑1

i=0 a
′

i(z)ω
i+1z +

∑1
i=0 iai(z)ω

i−1(az2 − bω2 − dz3 − fz4)

= (h(z) + g(z)ω)(
∑1

i=0 ai(z)ω
i),

(18)

where prime denotes differentiating with respect to the variable z. On equating the coefficients of ωi (i = 0, 1, 2) on
both sides of (18), we have

za
′

1(z)− ba1(z) = g(z)a1(z), (19)

za
′

0(z) = g(z)a0(z) + h(z)a1(z), (20)

h(z)a0(z) = a1(z)[az
2 − dz3 − fz4], (21)

Since, a1(z) and g(z) are polynomials, from (19) we conclude that a1(z) is a constant and g(z) = −b. for simplicity, we
take a1(z) = 1, and balancing the degrees of a0(z), and h(z), we conclude that deg h(z) = 2 and deg a0(z) = 2 , only.
Now suppose that

h(z) = Az2 +Bz + C, a0(z) = Dz2 + Ez + F (A ̸= 0, D ̸= 0), (22)

where A, B, C, D, E and F are all constants to be determined. Using (22) into (20) we obtain

h(z) = ((2 + b)D)z2 + ((1 + b)E)z + bF, (23)

Substituting a0(z), a1(z) and h(z) in (21) and setting all the coefficients of powers z to be zero, we obtain a system of
nonlinear algebraic equations, and by solving it, we obtain the following solutions:

F = 0, D = 1
2+b

√
(− (2 + b) f),

E = 1
2+b

√
(− (2 + b) f), d = f

(2+b) (3 + 2b)
(24)
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F = 0, D = − 1
2+b

√
(− (2 + b) f),

E = − 1
2+b

√
(− (2 + b) f), d = f

(2+b) (3 + 2b)
(25)

Using the conditions (24) in (17), we obtain

ω = − 1

2 + b

√
(− (2 + b) f)(z2 + z) (26)

Combining this first integral with (17), the second-order differential equation (12) can be reduced to

dv

dξ
= − 1

2 + b

√
(− (2 + b) f)(v2 + v). (27)

Solving (27) directly and changing to the original variables, we obtain the complex exponential function solution to
equation (1):

u(x, t) =

 1

−1 + C1 exp(
−in
n+1

√
( c(n+1)
k(2k+1) )(x− νt))

 1
n

, (28)

where C1 is arbitrary constants. Similarly, for the cases of (25), we have anther complex exponential function solutions:

u(x, t) =

 1

−1 + C2 exp(
in

n+1

√
( c(n+1)
k(2k+1) )(x− νt))

 1
n

, (29)

where C2 is arbitrary constants. These solutions are all new exact solutions.
Now we assume that r = 2 in (17). by the Division Theorem, there exists a polynomial

dp
dτ |(16)= (∂p∂z

∂z
∂τ + ∂p

∂ω
∂ω
∂τ |(16)

=
∑2

i=0 a
′

i(z)ω
i+1z +

∑2
i=0 iai(z)ω

i−1(az2 − bω2 − dz3 − fz4)

= (h(z) + g(z)ω)(
∑2

i=0 ai(z)ω
i)

(30)

On equating the coefficients of ωi (i = 0, 1, 2, 3) on both sides of (16), we have

za
′

2(z)− 2ba2(z) = g(z)a2(z), (31)

za
′

1(z)− ba1(z) = g(z)a1(z) + h(z)a2(z), (32)

g(z)a0(z) + h(z)a1(z) = 2a2(z)[az
2 − dz3 − fz4] + za

′

0(z), (33)

h(z)a0(z)) = a1(z)[az
2 − dz3 − fz4], (34)

Since, a2(z) and g(z) are polynomials, from (31) we conclude that a2(z) is a constant and g(z) = −2b. for simplicity, we
take a2(z) = 1, and balancing the degrees of a0(z), a1(z) and h(z), we conclude that deg h(z) = 2 and deg a1(z) = 2 ,
only. Now suppose that

h(z) = Az2 +Bz + C, a1(z) = Dz2 + Ez + F (A ̸= 0, D ̸= 0), (35)

where A, B, C, D, E and F are all constants to be determined. Using (35) into (32) and (33) we obtain

h(z) = ((2 + b)D)z2 + ((1 + b)E)z + bF,

a0(z) = ( 12
2f+2D2+D2b

2+b )z4 + ( 2d+3ED+2EDb
3+2b )z3 + ( 12

E2−2a+2DF+2DFb+E2b
1+b )z2 + bE F

1+2bz +
1
2F

E+bE+bF
b .

(36)

Substituting a0(z), a1(z) and h(z) in (34) and setting all the coefficients of powers z to be zero, we obtain a system of
nonlinear algebraic equations, and by solving it, we obtain the following solutions:

D = −2f√
(−f(2+b))

,

E =
2d
√

(−f(2+b))

f(3+2a) , F = 0, a = −((1 + b) d2 2+b
f(9+12b+4b2) ).

(37)
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D = 2f√
(−f(2+b))

,

E = −2d
√

(−f(2+b))

f(3+2a) , F = 0, a = −((1 + b) d2 2+b
f(9+12b+4b2) ).

(38)

Setting (37) in (17), we obtain that system (16) has two first integral

ω =
2
√
f( 2

√
2− i)

2
√
2 + b

z2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

z, (i2 = −1), (39)

ω = −
2
√
f( 2

√
2 + i)

2
√
2 + b

z2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

z, (i2 = −1). (40)

Combining this first integral with (16), the second-order differential equation (12) can be reduced to

dv

dξ
=

2
√
f( 2

√
2− i)

2
√
2 + b

v2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

v, (41)

dv

dξ
= −

2
√
f( 2

√
2 + i)

2
√
2 + b

v2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

v. (42)

Solving (41) and (42) directly and changing to the original variables, we obtain the exact solution to equation (1):

u(x, t) =

 1

(−1− i
√
2)R+ C3 exp(

ik(n+1)
n(3k(n+1)+2(1−n))

√
k(n+1)(2n+1)

c )(x− νt)

 1
n

(43)

u(x, t) =

 1

(−1 + i
√
2)R+ C4 exp(

ik(n+1)
n(3k(n+1)+2(1−n))

√
k(n+1)(2n+1)

c )(x− νt)

 1
n

(44)

where,R = n2c(3k(n+1)+2(1−n))
k2(n+1)2(2n+1) , C3 and C4 are arbitrary constants. Similarly, for the cases of (38), we have another

complex exponential function solutions:

u(x, t) =

 1

(−1 + i
√
2)R+ C5 exp(

−ik(n+1)
n(3k(n+1)+2(1−n))

√
k(n+1)(2n+1)

c )(x− υt)

 1
n

(45)

u(x, t) =

 1

(−1− i
√
2)R+ C6 exp(

−ik(n+1)
n(3k(n+1)+2(1−n))

√
k(n+1)(2n+1)

c )(x− υt)

 1
n

(46)

where,R = n2c(3k(n+1)+2(1−n))
k2(n+1)2(2n+1) , C5 and C6 are arbitrary constants.

Notice that the results in this paper are based on the assumption of r = 1, 2 for The generalized Benjamin-Bona-
Mahony (BBM) equation . For the cases of r = 3, 4 for these equations, the discussions become more complicated and
involves the irregular singular point theory and the elliptic integrals of the second kind and the hyperelliptic integrals.
Some solutions in the functional form cannot be expressed explicitly. One does not need to consider the cases m ≥ 5
because it is well known that an algebraic equation with the degree greater than or equal to 5 is generally not solvable.

4 Conclusions
In this work, we are concerned with The generalized Benjamin-Bona-Mahony (BBM) equation for seeking their travelling
wave solutions. We first transform each equation into an equivalent two-dimensional planar autonomous system then use
the first integral method to find one first integral which enables us to reduce The generalized Benjamin-Bona-Mahony
(BBM) equation to a first-order integrable ordinary differential equations. Finally, a class of travelling wave solutions for
the considered equations are obtained . These solutions include complex exponential function solutions. We believe that
this method can be applied widely to many other nonlinear evolution equations, and this will be done in a future work.
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[16] M. R. Miura. Bäacklund Transformation. Springer, Berlin, 1978.
[17] J. H. He, H. X. Wu. Exp-function method for nonlinear wave equations. Chaos, Solitons and Fractals, 30(2006):700-

708.
[18] J. H. He, M. A. Abdou. New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos,

Solitons and Fractals, 34(2007): 1421-1429.
[19] M. Inc, M. Ergut. Periodic wave solutions for the generalized shallow water wave equation by the improved Jacobi

elliptic function method. Appl Math E-Notes, 5(2005):89-96.
[20] M. Wang, X. Li and J. Zhang. The (G

′
/G)- expansion method and traveling wave solutions of nonlinear evolution

equations in mathematical physics.Phys. Lett. A. 372(2008):417-423.
[21] Z. Feng and R. Knobel. Traveling waves to a Burgers-Korteweg-de Vries-type equation with higherorder nonlinear-

ities. Journal of Mathematical Analysis and Applications, 328(2)(2007):1435-1450.
[22] M. J. Ablowitz and P. A. Clarkson. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University

Press, Cambridge, 1991.
[23] S. K. Paul and C. A. Roy. On the Analytical Approach to the N-Fold Bäcklund Transformation of Davey-Stewartson
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