Solving System of Fractional Order Partial Differential Equations by the Reduced Differential Transform Method

S. Shahmorad 1 *, A.A. Khajehnasiri 2

1 Department of Applied Mathematics, University of Tabriz, Tabriz-Iran
2 Department of Mathematics, Payame Noor University, PO Box 19395-3697 Tehran, Iran

(Received 17 December 2012, accepted 2 July 2013)

Abstract: In this paper, we illustrate application of the reduced differential transform method (RDTM) for solving systems of fractional order partial differential equations. The illustration will be based on formulation of the method on a general form of the fractional order PDE systems and using it on some examples. One of the most important advantages of this method is its simplicity in using.

Keywords: differential transform; system of fractional order partial differential equations; reduced Fractional Differential transform

1 Introduction

We consider a fractional order partial differential equation of the form

\[a(x,t)D_x u(x,t) + b(x,t)D_t^\gamma u(x,t) + F(x,t,u(x,t)) = f(x,t), \quad x,t \in [0,1] \]

(1)

where \(D_x \) and \(D_t^\gamma \) are the fractional and ordinary differential operators respectively with respect to \(x \) and \(y \) and

\[a(x,t)D_x = \begin{pmatrix} a_{11}(x,t)D_x^{m_{11}} & a_{12}(x,t)D_x^{m_{12}} & \cdots & a_{1n}(x,t)D_x^{m_{1n}} \\ a_{21}(x,t)D_x^{m_{21}} & a_{22}(x,t)D_x^{m_{22}} & \cdots & a_{2n}(x,t)D_x^{m_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x,t)D_x^{m_{n1}} & a_{n2}(x,t)D_x^{m_{n2}} & \cdots & a_{nn}(x,t)D_x^{m_{nn}} \end{pmatrix}, \]

\[b(x,t)D_t^\gamma = \begin{pmatrix} b_{11}(x,t)D_t^{\gamma_1} & b_{12}(x,t)D_t^{\gamma_2} & \cdots & b_{1n}(x,t)D_t^{\gamma_n} \\ b_{21}(x,t)D_t^{\gamma_1} & b_{22}(x,t)D_t^{\gamma_2} & \cdots & b_{2n}(x,t)D_t^{\gamma_n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1}(x,t)D_t^{\gamma_1} & b_{n2}(x,t)D_t^{\gamma_2} & \cdots & b_{nn}(x,t)D_t^{\gamma_n} \end{pmatrix}, \]

with \(m_{ij} \in \mathbb{Z}^+ \) and \(q - 1 \leq \gamma_{ij} < q \), \(q \in \mathbb{Z}^+ \) for \(i, j = 1, \cdots, n \),

\[f(x,t) = \begin{pmatrix} f_1(x,t) \\ \vdots \\ f_n(x,t) \end{pmatrix} \quad \text{and} \quad u(x,t) = \begin{pmatrix} u_1(x,t) \\ \vdots \\ u_n(x,t) \end{pmatrix}. \]

We consider the initial conditions for the problem (1) of the form

\[u(x,0) = C(x) = \begin{pmatrix} c_1(x) \\ \vdots \\ c_n(x) \end{pmatrix}, \quad u(0,t) = E(t) = \begin{pmatrix} e_1(t) \\ \vdots \\ e_n(t) \end{pmatrix}. \]
Note that the functions \(a(x, t), b(x, t), f(x, t), C(x) \) and \(E(t) \) are given continuous functions, and \(F(x, t, u(x, t)) \) is generally a non-linear term in terms of the unknown function \(u(x, t) \).

The fractional integro-differential equations and fractional differential equations have been the focus of many studies due to their frequent appearance in various fields such as physics, chemistry, biology, engineering and so on [1–3]. The concept of the differential transform method was first proposed in [1], and then applied for solving differential equations and systems of differential equations in [2]. Arikoglu [3] used this method for solving fractional differential equations. Shahmorad and et al. [4] used this method for solving fractional-order integro-differential equations with nonlocal boundary conditions. In recent years, some numerical methods have been used successfully to find the solution of various types of ordinary and partial fractional differential equations. Some of these methods are: the homotopy analysis method [6, 7], Adomian decomposition method [8, 9], variational iteration method [10] and fractional difference method [11, 12]. Recently a reduced form of the differential transform has been introduced and developed for solving ordinary and partial equations such as gas dynamics equation [13], generalized KDV equation [14] and so on. In this paper, we solve a system of fractional order partial differential equation of the form (1) by using Reduced Fractional differential Transform Method (RFDTM). The main advantages of this method are: its simplicity and directly using it to the problems without linearizing and discretizing.

2 Reduced differential transform method

In this section, we recall the fractional derivative and fractional RDTM definitions and summarize properties of the RDT in the proposition 1.

Definition 1 The fractional differentiation in the Riemann-Liouville sense is defined by

\[
D^\beta_{t_0}u(x, t) = \frac{1}{\Gamma(m - \beta)} \frac{d^m}{dt^m} \int^{t}_{t_0} (t - \zeta)^{m-\beta-1} u(x, \zeta) d\zeta, \quad x > x_0
\]

for \(m - 1 \leq \beta < m, m \in \mathbb{Z}^+ \) and \(t > t_0 \).

In order to avoid fractional initial and boundary conditions, the fractional derivative is defined in the Caputo sense:

Definition 2 [5] The fractional differentiation in the Caputo sense is defined by

\[
D^{\beta}_{t_0}u(x, t) = \frac{1}{\Gamma(m - \beta)} \frac{d^m}{dt^m} \left\{ \int^{t}_{t_0} \left[u(x, \zeta) - \sum^{k=0}_{k} \frac{(\zeta - t_0)^k}{(t - \zeta)^{\gamma - k}} \right] d\zeta \right\}
\]

We expand the analytical function \(u(x, t) \) as the fractional power series:

\[
u(x, t) = \sum^{\infty}_{k=0} U_k(x) (t - t_0)^{k/\alpha}
\]

where \(\alpha \) is the order of fraction and

\[
U_k(x) = \frac{1}{\Gamma(\beta k + 1)} [D^\beta_{t_0} u(x, t)]_{t=t_0}
\]

is the reduced fractional differential transform of \(u(x, t) \).

Since the initial conditions are implemented for the integer order derivatives, the transformation of the initial conditions are defined as follows:

\[
U_k(x) = \begin{cases}
\frac{1}{\Gamma(k/\alpha)} \left[D^{k/\alpha}_{t=t_0} u(x, t) \right]_{t=t_0}, & (k/\alpha) \in \mathbb{Z}^+, k = 0, 1, \ldots (\alpha \gamma - 1) \\
0, & (k/\alpha) \notin \mathbb{Z}^+
\end{cases}
\]

where \(\gamma \) is the order of fractional differential operator \(D^\gamma_t \).

IJNS homepage: http://www.nonlinearscience.org.uk/
Proposition 1 [15] Let $W_k(x)$, $U_k(x)$ and $V_k(x)$ be reduced differential transforms of the functions $w(x, t)$, $u(x, t)$ and $v(x, t)$ respectively. Then

(a). If $w(x, t) = au(x, t) \pm bv(x, t)$ for $a, b \in \mathbb{R}$, then

$$W_k(x) = aU_k(x) \pm bV_k(x).$$

(b). If $w(x, t) = x^m t^n$, then

$$W_k(x) = x^m \delta(k - n),$$

where

$$\delta(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0. \end{cases}$$

(c). If $w(x, t) = x^m t^n u(x, t)$, then

$$W_k(x) = x^m U_{k-n}(x).$$

(d). If $w(x, t) = u(x, t)v(x, t)$, then

$$W_k(x) = \sum_{r=0}^{k} U_r(x)V_{k-r}(x) = \sum_{r=0}^{k} U_{k-r}V_r(x).$$

(e). If $w(x, t) = u_1(x, t)u_2(x, t)\ldots u_{n-1}(x, t)u_n(x, t)$, then

$$W_k(x) = \sum_{k_{n-1}=0}^{k} \sum_{k_{n-2}=0}^{k_{n-1}} \cdots \sum_{k_1=0}^{k_2} U_{1,k_1}(x)U_{2,k_2-k_1}(x)\ldots U_{n-1,k_{n-1}-k_{n-2}}(x)U_{n,k-k_{n-1}}(x).$$

(f). If $w(x, t) = \frac{\partial^m}{\partial x^m} u(x, t)$, then

$$W_k(x) = \frac{\partial^m}{\partial x^m} U_k(x).$$

(g). If $w(x, t) = \frac{\partial^r}{\partial x^r} u(x, t)$, then

$$W_k(x) = (k+1)(k+2)\ldots(k+r)U_{k+r}(x) = \frac{(k+r)!}{k!} U_{k+r}(x).$$

(h). If $w(x, t) = \frac{\partial^r}{\partial x^r} u(x, t)$, then

$$W_k(x) = \frac{\Gamma(\beta + 1 + k/\alpha)}{\Gamma(1 + k/\alpha)} U_{k+\alpha \beta}(x).$$

(i). If $w(x, t) = \frac{\partial^{k_1}}{\partial x^{k_1}} [u_1(x, t)] \frac{\partial^{k_2}}{\partial x^{k_2}} [u_2(x, t)] \cdots \frac{\partial^{k_{n-1}}}{\partial x^{k_{n-1}}} [u_{n-1}(x, t)] \frac{\partial^{k_n}}{\partial x^{k_n}} [u_n(x, t)]$, then

$$W_k(x) = \sum_{k_{n-1}=0}^{k} \sum_{k_{n-2}=0}^{k_{n-1}} \cdots \sum_{k_2=0}^{k_3} \sum_{k_1=0}^{k_2} \frac{\Gamma(\beta_1 + 1 + k_1/\alpha)}{\Gamma(1 + k_1/\alpha)} \times \frac{\Gamma(\beta_2 + 1 + (k_2 - k_1)/\alpha)}{\Gamma(1 + (k_2 - k_1)/\alpha)} \cdots \frac{\Gamma(\beta_{n-1} + 1 + (k_{n-1} - k_{n-2})/\alpha)}{\Gamma(1 + (k_{n-1} - k_{n-2})/\alpha)} \times \frac{\Gamma(\beta_n + 1 + (k_n - k_{n-1})/\alpha)}{\Gamma(1 + (k_n - k_{n-1})/\alpha)} U_{1,k_1+\alpha \beta_1}(x) \times U_{2,k_2-k_1+\alpha \beta_2}(x) \cdots U_{n-1,k_{n-1}-k_{n-2}+\alpha \beta_{n-1}}(x)U_{n,k-k_{n-1}+\alpha \beta_{n}}(x)$$

where $\alpha \beta_i \in \mathbb{Z}^+$ for $i = 1, 2, \ldots, n$.

IUNS email for contribution: editor@nonlinearscience.org.uk
3 Numerical examples

In this section, we illustrate by the following examples

Example 1 Consider the partial system of differential equation

\[
\frac{\partial^{1/2} u_1(x, t)}{\partial t^{1/2}} + \frac{\partial^2 u_2(x, t)}{\partial x^2} = 3u_1(x, t) + x^2 t
\]

subject to the initial conditions

\[
u_1(x, 0) = \sin(x), \quad u_2(x, 0) = \cos(x).
\]

By choosing \(\gamma_{11} = 2, \gamma_{21} = 3\) and applying the RDT to the both sides of Eq.(7) and using proposition 1, it transforms to

\[
U_{1,k+1}(x) = \frac{\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \left(-\frac{\partial^2}{\partial x^2} U_{2,k}(x) + 3U_{1,k}(x) + x^2 \delta(k - 1)\right)
\]

\[
U_{2,k+1}(x) = \frac{\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \left(-\frac{\partial^3}{\partial x^3} U_{1,k}(x) + \sum_{r=0}^{k} U_{2,r}(x)U_{2,k-r}(x) - x^2 \delta(k - 2)\right)
\]

The reduced differential transform of the initial conditions are given by

\[
u_1(k, 0) = \sin(x) \quad \nu_2(k, 0) = \cos(x)
\]

Thus the approximate solutions, corresponding to \(N = 2\) and \(N = 3\), are listed as follows.

\(N = 2:\)

\[
u_1(x, t) = \sin(x) + t^{1/2} (3.38513 \sin(x) + 1.128379 \cos(x)) + t(8.007561 \sin(x) + 3 \cos(x)
\]
\[+ \ 0.886226x^2 + 3.96975 \cos(x)^2 - 1.984876)
\]

\[
u_2(x, t) = \cos(x) - 0.100000000 \times 10^{-8} t^{1/2} (0.111984652 \times 10^{10} \sin(x) - 0.111984 \times 10^{10} \cos(x)\]
\[+ \ 0.110773 \times 10^{10} \cos(x) t^{1/2} + 0.1107732 \times 10^{11} t^{1/2} \cos(x) \sin(x) - 0.221546 \times 10^{10} t^{1/2})
\]

\(N = 3:\)

\[
u_1(x, t) = \sin(x) + t(8.007562 \sin(x) + 0.886227^2 + 3.969752 \cos(x)^2 + 3 \cos(x) - 1.984876)
\]
\[+ \ t^{1/2} (3.385137 \sin(x) + 1.128379 \cos(x)) + t^{1/2} (18.071131 \sin(x) - 33.3178 \cos(x) \sin(x)
\]
\[1.99999x^3 + 14.999302 \cos(x)^3 + 8.95877 \cos(x)^2 - 4.06255 \cos(x) - 4.4793860)
\]

\[
u_2(x, 0) = \cos(x) + t^{1/2} (-1.119846 \sin(x) + 1.119846 \cos(x)^2 + t^{1/2} (-11.077321 \cos(x) \sin(x)
\]
\[+ \ 2.21546 \cos(x)^3 - 1.1077321 \cos(x)) + t(+41.1320933 + 13 \sin(x) - 76.26418 \sin(x) \cos(x)^2
\]
\[83.132093 \cos(x)^2 + 5.132093 \cos(x)^4 - 0.9027452x^2)
\]

Example 2 Consider a nonlinear system of fractional order partial differential equation of the form

\[
\frac{\partial^{1/4} u_1(x, t)}{\partial t^{1/4}} - 6u_2(x, t)u_3(x, t) = xt + \exp(x)
\]

\[
\frac{\partial^{1/3} u_2(x, t)}{\partial t^{1/3}} + \frac{\partial^2 u_3(x, t)}{\partial x^2} = \frac{1}{2} xt + x^3 t^2
\]

(9)

IJNS homepage: http://www.nonlinearscience.org.uk/
subject to the initial conditions

\[u_1(x, 0) = \sin(x) \quad u_2(x, 0) = \cos(x) \quad u_3(x, 0) = \exp(x) \] (10)

By choosing \(\gamma_1 = 4 \), \(\gamma_2 = 3 \), \(\gamma_3 = 2 \) and applying the RDT to both sides of Eq.(3.3) and using proposition 1, it transforms to

\[
U_{1,k+1}(x) = \frac{\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \left(6 \sum_{r=0}^{k} \frac{6}{r} U_{2,r}(x) U_{3,k-r}(x) + x\delta(k-1) + \delta(k) \exp(x)\right)
\]

\[
U_{2,k+1}(x) = \frac{\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \left(-\frac{\partial^2}{\partial x^2} U_{3,k}(x) + \frac{1}{2} x^2 \delta(k-1) + x^3 \delta(k-2)\right)
\]

\[
U_{3,k+1}(x) = \frac{\Gamma(1 + \frac{k}{2})}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \left(-\frac{\partial^2}{\partial x^2} U_{2,k}(x) + x \delta(k-3)\right)
\]

The reduced differential transform of the initial condition is given by

\[
U_1(k, 0) = \sin(x) \quad U_2(k, 0) = \cos(x) \quad U_3(k, 0) = \exp(x)
\]

The approximate solutions, corresponding to \(N = 3 \) and \(N = 4 \), are listed as follows.

\(N = 3 \):

\[
u_1(x, t) = \sin(x) + t^\frac{1}{2}(1.103262 + 6 \cos(x)e^{(x)} + e^x) + t^\frac{1}{2}(1.022765 + 6.77027 \cos(x)^2 - 6.719079e^{2x} + x)
\]

\[
+ t^\frac{1}{2}(9.64272 + 5.069994 \cos(x)e^{(x)} + 2.967546e^{(x)}x)
\]

\[
u_2(x, t) = \cos(x) + t^\frac{1}{2}(-1.119846e^{x}) + t^\frac{1}{2}(1.1161725 \cos(x) + 0.494591x) + t(0.8959188e^{(x)} + 0.9027452x^3)
\]

\[
u_3(x, t) = e^{(x)} + 1.128379 \cos(x)t^\frac{1}{2} + 0.9924381e^{(x)}t + 0.839643 \cos(x)t^\frac{1}{2}
\]

\(N = 4 \):

\[
u_1(x, t) = \sin(x) + t^\frac{1}{2}(1.103262 + 6 \cos(x)e^{(x)} + e^x) + t^\frac{1}{2}(1.022765 + 6.77027 \cos(x)^2)
\]

\[
- 6.719079e^{2x} + x) + t^\frac{1}{2}(9.64272 + 5.069994 \cos(x)e^{(x)} + 2.967546e^{(x)}x)
\]

\[
+ t(0.9190625 + 12.59465 \cos(x)^2 - 12.04378e^{(2x)} + 3.348517 \cos(x)x + 5.41641e^{(x)}x^3)
\]

\[
u_2(x, t) = \cos(x) + t^\frac{1}{2}(-1.119846e^{x}) + t^\frac{1}{2}(1.1161725 \cos(x) + 0.494591x) + t(0.8959188e^{(x)}
\]

\[
+ 0.9027452x^3 + \frac{4}{3}(0.7052042 \cos(x))
\]

\[
u_3(x, t) = e^{(x)} + 1.128379 \cos(x)t^\frac{1}{2} + 0.9924381e^{(x)}t + 0.839643 \cos(x)t^\frac{1}{2} + t(0.595490e^{(x)} - 2.93549x)
\]

4 Conclusion

In this paper we analyzed applicability of the reduced differential transform method for solving system of partial differential equations of fractional order. We showed simplicity and reliability of the method by handling examples of linear and nonlinear partial differential equations of fractional order. It can be applied for many similar equations without linearization, discretization and perturbation.

References

IJNS homepage: http://www.nonlinearscience.org.uk/