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1 Introduction
The fractional calculus is a classical mathematical notion and is a generalization of ordinary differentiation and integration
to an arbitrary order. Presently, study of fractional calculus has become an active area of research due to its numerous
applications in various fields, such as physics, fluid mechanics, viscoelasticity, chemistry and engineering sciences etc.
The theory of fractional differential equations have been studied by many author’s [1–11].

The deterministic models often fluctuate due to environmental noise. A natural extension of a deterministic model is
stochastic model, where relevant parameters are modeled as suitable stochastic processes. Due to this fact, most of the
problems in practical life situations are basically modeled by stochastic equations rather than deterministic. Therefore,
it is of great significance to introduce the concept of stochastic effects in the investigation of differential equations [12].
It is also a well known fact that many dynamical system not only depends on present and past states but also involved
derivatives with delays. To describe such type of systems, neutral functional differential equations are used for instance
see the papers [13–15] and references therein.

However, it is known that the impulsive effects exist widely in different areas of real world problems such as me-
chanics, electronics, neural networks, telecommunications, finance and economics etc. [16, 17]. Due to this fact, the
states of many evolutionary processes are often subject to instantaneous perturbations and experience abrupt changes at
certain moments of time. The duration of these changes is very short and negligible in comparison with the duration of
the process considered and can be thought of as impulses. Therefore, it is important to consider the effect of impulses in
the investigation of stochastic delay differential equations. For recent contribution, we cite the papers [18–21].

C. Li et al. in [20] considered the following problem{
dy(t) = F (t, y(t), y(t− τ(t)))dt+G(t, y(t), y(t− τ(t)))dw(t), t ̸= tk,

y(t+k )− y(tk) = Ik(y(tk)), t = tk, k ∈ N,

and studied the stability of the stochastic differential delay system with nonlinear impulses. Subsequently, the authors
established the equivalent relation between the solution of the n-dimensional stochastic differential delay system with
nonlinear impulsive and without impulsive effects.
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Dabas and Gautam in their paper [22] considered the following impulsive neutral fractional integro-differential equa-
tion

cDα
t

[
x(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, xρ(s,xs))ds

]
= f(t, xρ(t,xt), B(x)(t)), t ∈ [0, T ],

∆x(tk) = Ik(x(t
−
k )),∆x

′(tk) = Qk(x(t
−
k )), k = 1, 2, . . . ,m,

x(t) = ϕ(t) , t ∈ [−d, 0], ax′(0) + bx′(T ) =

∫ T

0

q(x(s))ds, a+ b ̸= 0, b ̸= 0,

where α ∈ (1, 2) and B is a Volterra integral operator. The authors established the results of existence of solution by
using the Banach and Krasnoselkii’s fixed point theorems.

Wang et al. in [23] studied the following fractional differential equation with boundary and impulsive conditions:

CDq
tu(t) = f(t, u(t)), t ∈ [0, T ], q ∈ (1, 2)

∆u(tk) = Ik(u(t
−
k )),∆u

′(tk) = Jk(u(t
−
k )), k = 1, 2, · · · ,m,

u(0) = u0, u
′(0) = u0,

the authors first established the definition of the solution for the considered problem and proved the existence and unique-
ness results by using Banach and Krasnoselskii’s fixed point theorems.

Motivated by the mention work [20, 22, 23] in this article, we are concerned with the existence and uniqueness of
solution for impulsive fractional functional differential equation of the form:

cDα
t

[
x(t) +

∫ t

0

(t− s)βh(s, xs)ds

]
= J2−α

t

[
f(t, xt) + g(t, xt)

dw(t)

dt

]
,

t ∈ J = (0, T ], t ̸= tk, β ∈ Z+, (1)
∆x(tk) = Ik(x(t

−
k )),∆x

′(tk) = Qk(x(t
−
k )), k = 1, 2, . . . ,m, (2)

x(t) = ϕ(t) , t ∈ [−d, 0], x′(0) = x1 ∈ R, (3)

where J is an operational interval and cDα
t denotes the Caputo’s fractional derivative of order α ∈ (1, 2) and x(·) takes

the value in the real separable Hilbert space H; f, h : J × PC0
L → H, g : J × PC0

L → L(K,H) and Ik, Qk : H → H
are appropriate functions; ϕ(t) is F0- measurable H-valued random variable independent of w. For 0 = t0 < t1 < · · · <
tm < tm+1 = T , ∆x(tk) = x(t+k ) − x(t−k ), ∆x′(tk) = x′(t+k ) − x′(t−k ), x(t

+
k ) and x(t−k ) denote the right and left

limits of x at tk. Similarly, x′(t+k ) and x′(t−k ) denote the right and left limits of x′ at tk respectively and xt ∈ PC0
L is

defined as xt(θ) = x(t+ θ) for θ ∈ [−d, 0].
However, to the best of our knowledge, the existence and uniqueness of solutions for a class of impulsive neutral

stochastic fractional order α ∈ (1, 2) differential equations with finite delay in a Hilbert space is an untreated topic in
the literature and the aim of this paper is to fill up this gap. The paper is divided into four sections, in second section we
include some basic definitions and some relevant results. Third section is equipped with main results for the considered
problem (1)-(3) and in the last section an example is presented to verify the results of the paper.

2 Preliminaries
Let H,K be two real separable Hilbert spaces and L(K,H) be the space of bounded linear operators from K into H. For
convenience, we will use the same notation ∥·∥ to denote the norms in H,K and L(K,H), and use (·, ·) to denote the inner
product of H and K without any confusion. Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space satisfying that
F0 contains all P-null sets of F . An H−valued random variable is an F- measurable function x(t) : Ω → H and a
collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called stochastic process. Usually we write x(t) instead
of x(t, ω) and x(t) : J → H in the space of S. W = (Wt)t≥0 be a Q-Wiener process defined on (Ω,F , {Ft}t≥0,P) with
the covariance operator Q such that TrQ < ∞. We assume that there exists a complete orthonormal system {ek}k≥1

in K, a bounded sequence of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, . . . , and a sequence of
independent Brownian motions {βk}k≥1 such that

(w(t), e)K =
∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0.
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Let L2
0 = L2(Q 1

2K,H) be the space of all Hilbert Schmidt operators from Q 1
2K to H with the inner product< φ,ψ >L2

0
=

Tr[φQψ∗].
The collection of all strongly measurable, square integrable, H-valued random variables, denoted by

L2(Ω,F , {Ft}t≥0,P;H) = L2(Ω;H),

is a Banach space equipped with norm ∥x(·)∥2L2 = E∥x(·, w)∥2H, where E denotes expectation defined by E(h) =∫
Ω
h(w)dP. An important subspace is given by L2

0(Ω;H) = {f ∈ L2(Ω,H) : f is F0- is measurable}.
Let PC0

L = C([−d, 0],L2(Ω;H)) be a Banach space of all continuous map from [−d, 0] into L2(Ω;H) satisfying the
condition supE∥ϕ(t)∥2 <∞ with norm

∥ϕ∥PC0
L
= sup

t∈[−d,0]

{E∥ϕ(t)∥H} , ϕ ∈ PC0
L.

Consider C1(J,L2(Ω;H)) be a Banach space of all continuously differentiable map from J into L2(Ω;H) satisfying the
condition supE∥x(t)∥2 <∞ with norm defined

∥x∥2C1 = sup
t∈J

1∑
j=0

{
E∥xj(t)∥2H

}
, x ∈ C1(J,L2(Ω;H)).

To study the impulsive conditions, we consider

PC2
L = PC1([−d, T ],L2(Ω;H)),

be a Banach space of all such continuous functions x : [−d, T ] → L2(Ω;H), which are continuously differentiable on
[0, T ] except for a finite number of points ti ∈ (0, T ), i = 1, 2, . . . ,N, at which x′(t+i ) and x′(t−i ) = x′(ti) exists and
endowed with the norm

∥x∥2PC2
L
= sup

t∈J

1∑
j=0

{
E∥xj(t)∥2H

}
, x ∈ PC2

L.

Definition 1 The Reimann-Liouville fractional integral operator for order α > 0, of a function f : R+ → R and
f ∈ L1(R+, X) is defined by

J0
t f(t) = f(t), Jα

t f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0, t > 0,

where Γ(·) is the Gamma function.

Definition 2 Caputo’s derivative of order α > 0 for a function f : [0,∞) → R is defined as

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds = Jn−αf (n)(t),

for n− 1 < α < n, n ∈ N . If 0 < α < 1, then

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf (1)(s)ds.

Obviously, Caputo’s derivative of a constant is equal to zero.

We mention the statement of Krasnoselskii’s fixed point theorem from [24] and using it to prove one of the result of
this paper.

Theorem 1 Let U be a closed convex and nonempty subset of a Banach space X. Let P and Q be two operators such that:
(i) Px+Qy ∈ U whenever x, y ∈ U ,(ii) P is compact and continuous, (iii) Q is a contraction mapping. Then there exists
z ∈ U such that z = Pz +Qz.
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Definition 3 A measurable Ft− adapted stochastic process x : [−d, T ] → H such that x ∈ PC2
L is called a solution

of the system (1)-(3) if x(0) = ϕ(0) and x′(0) = x1 on [−d, 0],∆x|t=tk = Ik(x(t
−
k )) and ∆x′|t=tk = Qk(x(t

−
k )),

k = 1, 2, · · · ,m, the restriction of x(·) to the interval [0, T )\t1, . . . , tm, is continuous and x(t) satisfies the following
fractional integral equation

x(t) =



ϕ(0) + x1t−
∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (0, t1],

ϕ(0) + x1t+ I1(x(t
−
1 )) +Q1(x(t

−
1 ))(t− t1)

−
∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (t1, t2],

· · ·
ϕ(0) + x1t+

∑k
i=1[Ii(x(t

−
i )) +Qi(x(t

−
i ))(t− ti)]

−
∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (tk, tk+1],

(4)

for detailed steps of the result (4) one can see [16].

Further, we introduce the following assumptions to establish our results:

(H1) The nonlinear maps f, h : J × PC0
L → H and g : J × PC0

L → L(K,H) are continuous and there exits positive
constants Lf , Lg, Lh such that

E∥f(t, φ)− f(t, ψ)∥2H ≤ Lf∥φ− ψ∥2PC0
L
,

E∥g(t, φ)− g(t, ψ)∥2H ≤ Lg∥φ− ψ∥2PC0
L
,

E∥h(t, φ)− h(t, ψ)∥2H ≤ Lh∥φ− ψ∥2PC0
L
,

for all t ∈ J and φ,ψ ∈ PC0
L.

(H2) The functions Ik, Qk : H → H are continuous and there exists positive LI , LQ such that

E∥Ik(x)− Ik(y)∥2H ≤ LIE∥x− y∥2H,
E∥Qk(x)−Qk(y)∥2H ≤ LQE∥x− y∥2H,

for all x, y ∈ H and k = 1, 2, · · · ,m.

3 Existence and uniqueness results

This result is based on Banach contraction fixed point theory.

Theorem 2 Suppose that the assumptions (H1)−H2) hold and the following inequality

Θ =

{
5(mLI +mT 2LQ) + 5T 2[

T 2β

(β + 1)2
Lh +

T 2

4
Lf +

T

3
Lg]

}
< 1, (5)

is satisfied, then the system (1)-(3) has a unique solution.
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Proof. We convert the problem (1)-(3) into fixed point problem. Let us consider an operator N : PC2
L → PC2

L defined
as

(Nx)(t) =



ϕ(0) + x1t−
∫ t

0
(t− s)βh(s, xs)ds

+
∫ t

0
(t− s)f(s, xs)ds+

∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (0, t1],

ϕ(0) + x1t+ I1(x(t
−
1 )) +Q1(x(t

−
1 ))(t− t1)

−
∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (t1, t2],

...

ϕ(0) + x1t+
∑k

i=1[Ii(x(t
−
i )) +Qi(x(t

−
i ))(t− ti)]

−
∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (tk, tk+1].

(6)

Now we show that N is a contraction map. For this we take two points x, x∗ such that for t ∈ (0, t1], we have

E∥(Nx)(t)− (Nx∗)(t)∥2H ≤ 3E∥
∫ t

0

(t− s)β [h(s, xs)− h(s, x∗s)]ds∥2H

+3E∥
∫ t

0

(t− s)[f(s, xs)− f(s, x∗s)]ds∥2H

+3E∥
∫ t

0

(t− s)[g(s, xs)− g(s, x∗s)]dw(s)∥2H

≤ 3T 2[
T 2β

(β + 1)2
Lh +

T 2

4
Lf +

T

3
Lg]∥x− x∗∥2PC2

L
.

On similar ground, when t ∈ (t1, t2], we obtain the following estimate

E∥(Nx)(t)− (Nx∗)(t)∥2H ≤ 5E∥I1(x(t−1 ))− I1(x
∗(t−1 ))∥2H

+5E∥ Q1(x(t
−
1 ))(t− t1)−Q1(x

∗(t−1 ))(t− t1)∥2H

+5E∥
∫ t

0

(t− s)β [h(s, xs)− h(s, x∗s)]ds∥2H

+5E∥
∫ t

0

(t− s)[f(s, xs)− f(s, x∗s)]ds∥2H

+5E∥
∫ t

0

(t− s)[g(s, xs)− g(s, x∗s)]dw(s)∥2H

≤
{
5(LI + T 2LQ) + 5T 2[

T 2β

(β + 1)2
Lh

+
T 2

4
Lf +

T

3
Lg]

}
∥x− x∗∥2PC2

L
.

Similarly for t ∈ (tk, tk+1], k = 2, 3, · · ·m, we may estimate as

E∥(Nx)(t)− (Nx∗)(t)∥2H ≤
{
5(mLI +mT 2LQ) + 5T 2[

T 2β

(β + 1)2
Lh

+
T 2

4
Lf +

T

3
Lg]

}
∥x− x∗∥2PC2

L

= Θ∥x− x∗∥2PC2
L
.

Since Θ < 1, this implies N is a contraction map and has a unique fixed point x ∈ PC2
L which become the solution of

the problem (1)-(3) on J . This completes the proof of the theorem.
Second result is based on the Krasnoselskii’s fixed point theorem, for this we take the following assumptions.
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(H3) f, h : J × PC0
L → H and g : J × PC0

L → L(K,H) are continuous and there exists continuous functions
µ1, µ2, µ3 : J → (0,∞) such that

E∥f(t, ϕ)∥2H ≤ µ1(t)∥ϕ∥2PC0
L
,

E∥g(t, ϕ)∥2H ≤ µ2(t)∥ϕ∥2PC0
L
,

E∥h(t, ϕ)∥2H ≤ µ3(t)∥ϕ∥2PC0
L
,

where t ∈ J and ϕ ∈ PC0
L.

(H4) The functions Ik, Qk : H → H are continuous and there exists positive constants ∆,∇ such that

∆ = max
1≤k≤m, x∈H

{E∥Ik(x)∥2H}, ∇ = max
1≤k≤m, x∈H

{E∥Qk(x)∥2H}.

Theorem 3 Let the assumptions (H1), (H3)− (H4) hold with following inequalities

6

{
[ϕ(0) + x1T ] +△m+∇mT 2 + T 2

[
T 2β

(β + 1)2
µ∗
3 +

T 2

4
µ∗
1 +

T

3
µ∗
2

]}
≤ q,

3T 2

[
T 2β

(β + 1)2
Lh +

T 2

4
Lf +

T

3
Lg

]
< 1, (7)

where q is a positive real constant, µ∗
1 = sups∈[0,t] µ1(s), µ

∗
2 = sups∈[0,t] µ2(s), and µ∗

3 = sups∈[0,t] µ3(s). Then the
system (1)-(3) has at least one solution on J .

Proof. Let us consider the operators ψ1, ψ2 : PC2
L → PC2

L defined as

(ψ1x)(t) =


ϕ(0) + x1t, t ∈ (0, t1],

ϕ(0) + x1t+ I1(x(t
−
1 )) +Q1(x(t

−
1 ))(t− t1), t ∈ (t1, t2],

· · ·
ϕ(0) + x1t+

∑k
i=1[Ii(x(t

−
i )) +Qi(x(t

−
i ))(t− ti)], t ∈ (tk, tk+1],

and

(ψ2x)(t) =



∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (0, t1],

· · ·∫ t

0
(t− s)βh(s, xs)ds+

∫ t

0
(t− s)f(s, xs)ds

+
∫ t

0
(t− s)g(s, xs)dw(s), t ∈ (tk, tk+1].

In order to use Theorem 1 we will verify that ψ1 is compact and continuous while ψ2 is a contraction operator. For
the sake of convenience, we divide the proof into several steps.
Step 1. We show that ψ1x+ ψ2x

∗ ∈ PC2
L for x, x∗ ∈ PC2

L. For t ∈ (0, t1], we have

E∥(ψ1x)(t) + (ψ2x
∗)(t)∥2H ≤ {4[ϕ(0) + x1t]

+4T 2[
T 2β

(β + 1)2
µ∗
3 +

T 2

4
µ∗
1 +

T

3
µ∗
2]}∥x∥2PC2

L
.

Similarly, for t ∈ (tk, tk+1], k = 1, 2, . . . ,m, we get

E∥(ψ1x)(t) + (ψ2x
∗)(t)∥2H ≤ {6[ϕ(0) + x1t] + 6△m+ 6∇mT 2 +

+6T 2[
T 2β

(β + 1)2
µ∗
3 +

T 2

4
µ∗
1 +

T

3
µ∗
2]}∥x∥2PC2

L

≤ q.
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This implies that ∥(ψ1x)(t) + (ψ2x
∗)(t)∥

PC2
L
≤ q, means (ψ1x)(t) + (ψ2x

∗)(t) ∈ PC2
L.

Step 2. Here we show that the map ψ1 is continuous on PC2
L. Let {xn}∞n=1 be a sequence in PC2

L with limxn → x ∈
PC2

L. Then for t ∈ (tk, tk+1], k = 0, 1, . . . ,m, we have

E∥(ψ1x
n)(t)− (ψ1x)(t)∥2H ≤ 2mE∥Ii(xn(t−i ))− Ii(x(t

−
i ))(t)∥

2
H

+2mT 2E∥Qi(x
n(t−i ))−Qi(x(t

−
i ))(t)∥

2
H,

since the functions Ii, Qi, i = 1, 2, ...,m, are continuous hence limn→∞E∥ψ1x
n − ψ1x∥2H = 0, which implies that the

mapping ψ1 is continuous on PC2
L.

Step 3. Now we show that ψ1 maps bounded sets into bounded sets in PC2
L.

Let us prove that for q > 0 there exists r̂ > 0 such that for each x ∈ PC2
L, we have E∥(ψ1x)(t)∥2H ≤ r̂ for t ∈

(tk, tk+1], k = 0, 1, . . . ,m. Now, we have

E∥(ψ1x)(t)∥2H ≤ 3E∥ϕ(0) + x1t∥2H

+3E
k∑

i=1

∥Ii(x(t−i ))∥
2
H + 3E

k∑
i=1

∥(t− ti)Qi(x(t
−
i ))∥

2
H

≤ 3(ϕ(0) + x1T ) + 3m∆+ 3mT 2∇ = r̂,

which proves the desired result.

Step 4. The map ψ1 is equicontinuous.

Let u, v ∈ (tk, tk+1], tk ≤ u < v ≤ tk+1, k = 0, 1, 2, . . . ,m, x ∈ PC2
L we obtain

E∥(ψ1x)(v)− (ψ1x)(u)∥2H
≤ 2E∥(v − u)x1∥2H + 2m∥(v − ti)− (u− ti)∥2E∥Qi(x(t

−
i ))∥

2
H.

As v → u, then limu→v E∥(ψ1x)(v) − (ψ1x)(u)∥2H = 0, which implies that ψ1 is equicontinuous. Finally, combining
Step 1 to Step 4 together with Ascoli’s theorem, we conclude that the operator ψ1 is compact.

Step 5. Now, we show that the map ψ2 is a contraction mapping. Let x, x∗ ∈ PC2
L and t ∈ (tk, tk+1], k =

0, 1, . . . ,m, we have

E∥(ψ2x)(t)− (ψ2x
∗)(t)∥2H ≤ 3E∥

∫ t

0

(t− s)β [h(s, xs)− h(s, x∗s)]ds∥2H

+3E∥
∫ t

0

(t− s)[f(s, xs)− f(s, x∗s)]ds∥2H

+3E∥
∫ t

0

(t− s)[g(s, xs)− g(s, x∗s)]dw(s)∥2H,

≤ 3T 2[
T 2β

(β + 1)2
Lh +

T 2

4
Lf +

T

3
Lg]∥x− x∗∥2PC2

L
.

By the condition given in the equation (7), we obtain that ψ2 is a contraction mapping. Therefore, by Krasnoselskii’s fixed
point theorem we can conclude that the problem (1)-(3) has at least one solution on J . This completes the proof of the
theorem.
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4 Example
We consider the following partial differential equation with fractional derivative of the form

∂α

∂tα

[
u(t, x) +

∫ t

0

(t− s)
∥u(s− d, x)∥

25 + ∥u(s− d, x)∥
ds

]
=

1

Γ(2− α)

∫ t

0

(t− s)1−α

×
[

∥u(s− d, x)∥
36 + ∥u(s− d, x)∥

ds+
∥u(s− d, x)∥

49 + ∥u(s− d, x)∥
dw(s)

]
,

t ∈ [0, 1], x ∈ (0, π), t ̸= 1

2
. (8)

u(t, x) = ϕ(t, x), u′(0, x) = 0, t ∈ [−d, 0], x ∈ [0, π], (9)
u(t, 0) = u(t, π) = 0, u′(t, 0) = u′(t, π) = 0, t ≥ 0, (10)

∆u|t= 1
2
− = sin(

1

20
∥u(1

2

−
, x)∥); ∆′u|t= 1

2
− = cos(

1

20
∥u(1

2

−
, x)∥), (11)

where ∂α

∂tα is Caputo’s fractional derivative of order α ∈ (1, 2), 0 < t1 < 1 are prefixed numbers and ϕ ∈ PCL2 . Let
X = L2[0, π] and setting u(t)(x) = u(t, x), such that

E∥f(t, xt)− f(t, yt)∥2H ≤ 1

36
E∥x− y∥2H,

E∥g(t, xt)− g(t, yt)∥2H ≤ 1

49
E∥x− y∥2H,

E∥h(t, xt)− h(t, yt)∥2H ≤ 1

25
E∥x− y∥2H,

E∥Ik(x(t−))− Ik(y(t
−))∥2H ≤ 1

20
E∥x− y∥2H,

E∥Qk(x(t
−))−Qk(y(t

−))∥2H ≤ 1

20
E∥x− y∥2H,

then with these settings the problem (8)-(11) can be rewritten in the abstract form of the equations (1)-(3). Further more,
we have Lf = 1

36 , Lg = 1
49 , Lh = 1

25 , LI = 1
20 , LQ = 1

20 , β = 1, m = 1, T = 1, put these values in the condition
given in the Theorem 2 as

Θ =

{
5(mLI +mT 2LQ) + 5T 2[

T 2β

(β + 1)2
Lh +

T 2

4
Lf +

T

3
Lg]

}
,

we get Θ = 0.61 < 1, which implies that the problem (8)-(11) has a unique solution in [0, 1].
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