
ISSN 1749-3889 (print), 1749-3897 (online)
International Journal of Nonlinear Science

Vol.27(2019) No.1,pp.53-64

Secure Communication Based on Synchronization of Three Chaotic Systems

Bashir Naderi1 ∗, Hossein Kheiri2, Aghileh Heydari3
1 Department of Mathematics, Payame Noor University, I. R. of Iran
2 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
3 Department of Mathematics, Payame Noor University, I. R. of Iran

(Received January 28 2016, accepted 5 February 2018)

Abstract: In this paper, we study the synchronization of three chaotic T-system with known and unknown
parameters. The nonlinear feedback control and adaptive control schemes are used for synchronization with
known and unknown parameters respectively. In unknown parameter case, each of systems has two unknown
parameters and one known parameter. The stability of synchronization of three system is proved using Lya-
punov stability theorem. Also, we use the synchronization of three chaotic systems with unknown parameters
in secure communication via masking method. In secure communication, known parameters, unknown pa-
rameters, an affine combination of states, and coefficients are used for encryption and decryption. Numerical
simulations are shown the effectiveness and feasibility of presented method.
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1 Introduction
Chaos, as an interesting phenomenon in nonlinear dynamical systems, has been studied widely over the last four decades
[1–7]. Chaotic and hyperchaotic systems are nonlinear deterministic systems that display complex and unpredictable
behavior. These systems have sensitivity with respect to initial conditions. The chaotic and hyperchaotic systems have
many important fields in applied nonlinear sciences, such as laser physics, secure communications, nonlinear circuits,
control, neural networks, and active wave propagation [2, 8–17].

Chaotic system synchronization has been investigated since Pecora and Carrol have introduced in 1990 [5]. Chaos
synchronization, as an important topic in nonlinear science, has been widely investigated in many fields, such as physics,
chemistry, ecological science, and secure communications [6, 18–20]. Various techniques have been proposed to achieve
chaos synchronization such as adaptive control [21–23], active control [24], sliding-mode [25], and nonlinear control [26].
Recently, the synchronization of chaotic Complex systems was studied in [27, 28].

Secure communication was developed in 1992 based on synchronization of chaotic dynamical systems. The general
idea for transmitting information via chaotic systems is that, an information signal is embedded in the transmitter system
which produces a chaotic signal. The information signal is recovered by the chaotic receiver.

Chaotic communication techniques include chaos masking, chaos modulation, and chaos shift keying. In chaos mask-
ing the information signal is added directly to the transmitter. In chaos modulation is based on the masterslave synchro-
nization, where the information signal is injected into the transmitter as a nonlinear filter. Chaos shift keying is supposed
the information signal is binary is mapped into the transmitter and the receiver. In these three cases, the information signal
can be recovered by a receiver if the transmitter and the receiver are synchronized [29–31].

In 1993, Cuomo et al. [32] developed the additive chaos masking approach. Dedieu et al. [33] presented the chaotic
shift keying or the chaotic switching approach in 1993.

In 1996, Yang and Chua [34] introduced the chaotic parameter modulation method, where the information signal is
used to modulate the chaotic systems parameters of in the transmitter.
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In 1997, Yang et al. [6] introduced a novel secure communication scheme by combining cryptography with chaos to
generate what is called chaotic cryptrosystem. In this scheme, the information signal is encrypted by an encryption rule
with a key generated from the chaotic system in the transmitter. Then, the techniques based on chaotic masking or chaotic
modulation can be used to send the encrypted signal. At the receiver, a synchronization process between the two systems
in the transmitter and the receiver is achieved and the signal is recovered. Then, the information signal can be retrieved
by a decryption rule in the receiver.

The most of studies in synchronization and secure communications via chaotic systems are between two systems
which are known drive and response systems. There are a few researches with three systems in this field [35–38].

In this paper, we study the synchronization of three chaotic systems with known and unknown parameters. In synchro-
nization of three systems, we consider each system track each others, and each of systems are master and slave systems.
In synchronization with unknown parameters, we let two unknown parameters for each systems. The T-system [39] is
taken as an example to verify the results. We use this method for secure communications between three cases. Also, we
use known parameters, unknown parameters, an affine combination of states, and coefficients of combination as codes for
coding and decoding of signal. We use the feedback and adaptive control methods, for synchronization of three systems
with known and unknown parameters, respectively. Stability of error dynamical systems and updating rules are obtained
by Lyapunov theorem. Further, numerical simulations are computed to check the analytical expressions of controllers and
estimation lows.

The rest of this paper is organized as follows: Section 2 briefly introduces the chaotic T-system. In Section 3, the
synchronization of three chaotic T-systems and numerical simulations are addressed. In section 4, we propose a masking
method for secure communication. Besides, the effectiveness of the proposed scheme is evaluated with simulations for
continuous signal. Finally, concluding remarks are given in Section 5.

2 T-system
In 2005, Tigen [39] introduced a new real chaotic nonlinear system and called it T-system, as follows: ẋ1 = a(x2 − x1),

ẋ2 = (c− a)x1 − ax1x3,
ẋ3 = x1x2 − bx3,

(1)

where x1, x2, and x3 are the state variables and a, b and c are real positive parameters. By choosing a = 2.1, b = 0.6,
and 0 < c < 40, the Lyapunov exponents in Fig. 1 shows that the system (1) is a chaotic system. Because one of the
Lyapunov exponents is positive. Also it can be considered as a dissipative system, since sum of its Lyapunov exponents
is negative. The attractors of chaotic systems are bounded but not a fixed point or limit cycle. It is a properties of chaotic
systems [40]. Fig. 2 displays an attractor of the T-system for some parameters and initial conditions. Synchronization of
this system can be used for cryptography and decryption of data in secure communication.

3 Synchronization of three systems
For synchronizing of three chaotic systems, assume the systems be defined as follows:

ẋ = f(x, p1) + u, (2)

ẏ = g(y, p2) + v, (3)

ż = h(z, p3) + w, (4)

where x = (x1, x2, · · · , xn)
t, y = (y1, y2, · · · , yn)t, z = (z1, z2, · · · , zn)t ∈ Rn are the state vectors of the systems,

u, v, and w are n-dimensional control signals and p1, p2, and p3 are vector parameters (known or unknown). The goal is
to design appropriate controllers u, v, and w such that, for any initial conditions, we have

lim
t−→∞

x(t) = lim
t−→∞

y(t) = lim
t−→∞

z(t).

For this purpose, we define error dynamics as follows exy = x− y or eyx = y − x,
exz = x− z or ezx = z − x,
eyz = y − z or ezy = z − y.

(5)
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Figure 1: Lyapunov exponents of system (1), for a = 2.1, b = 0.6, and 0 < c < 40.
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Figure 2: An attractor of T-system for a = 2.1, b = 0.6, and c = 28 with initial states (x1(0), x2(0), x3(0)) = (1, 3, 0) .
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Then it is sufficient we consider two of them. For this purpose, we take{
exy = x− y → ˙exy = ẋ− ẏ,
ezx = y − z → ˙eyz = ẏ − ż.

(6)

3.1 Synchronization of three system with known parameters
We consider three identical T-system with known parameters as follow ẋ1 = a(x2 − x1) + u1,

ẋ2 = (c− a)x1 − ax1x3 + u2,
ẋ3 = x1x2 − bx3 + u3,

(7)

 ẏ1 = a(y2 − y1) + v1,
ẏ2 = (c− a)y1 − ay1y3 + v2,
ẏ3 = y1y2 − by3 + v3,

(8)

and  ż1 = a(z2 − z1) + w1,
ż2 = (c− a)z1 − az1z3 + w2,
ż3 = z1z2 − bz3 + w3.

(9)

The errors among the three systems (7)-(9) are defined as follow e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3,
e4 = x1 − z1, e5 = x2 − z2, e6 = x3 − z3,
e7 = z1 − y1, e8 = z2 − y2, e9 = z3 − y3.

(10)

With regard to relations (5) and (6), we can use e1, e2, · · · , e6 of (10) for obtaining controllers. Then the error
dynamical system is 

ė1 = a(e2 − e1) + u1 − v1,
ė2 = (c− a)e1 − a(x1x3 − y1y3) + u2 − v2,
ė3 = x1x2 − y1y2 − be3 + u3 − v3,
ė4 = a(e5 − e4) + u1 − w1,
ė5 = (c− a)e4 − a(x1x3 − z1z3) + u2 − w2,
ė6 = x1x2 − z1z2 − be6 + u3 − w3.

(11)

Theorem 1 Systems (7)-(9) will be globally asymptotically synchronized for any initial condition with the following
nonlinear feedback controller laws,

u1 = u2 = u3 = 0,
v1 = ae2, w1 = ae5,
v2 = (c− a)e1 − a(x1x3 − y1y3) + e2, w2 = (c− a)e4 − a(y1y3 − z1z3) + e5,
v3 = x1x2 − y1y2 − be3 + e3, w3 = −z1z2 + x1x2 − be6 + e6.

(12)

Proof. We define the Lyapunov function as follow:

V (t) = 1
2

∑6
1 e

2
i . (13)

Using of (11) and (12) we have:

˙V (t) = −
6∑
1

eiėi = −[a(e21 + e24) + (e22 + e23 + e25 + e26)] < 0.

It is clear that V is positive definite and V̇ is negative definite. According to the Lyapunov stability theorem, the error
system (11) converges to the equilibrium points of (11). It follow that the systems (7)-(9) synchronize asymptotically and
globally. This completes the proof.
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Figure 3: Synchronization of three systems with known parameters.

Figure 4: Errors due for synchronization of three systems with known parameters.

3.1.1 Numerical simulation for synchronization with known parameters

To demonstrate and verify the validity of the proposed scheme, we discuss and illustrate the numerical simulations re-
sults for chaotic T-system (1). Systems (7)-(9) with controllers (12) are solved numerically for a = 2.1, b = 0.6, and
c = 30 with different initial conditions (x1(0), x2(0), x3(0)) = (3,−5,−2), (y1(0), y2(0), y3(0)) = (2.5, 1, 5), and
(z1(0), z2(0), z3(0)) = (2,−0.5, 8). The results of chaotic synchronization of three identical chaotic T-systems via non-
linear feedback control is shown in Fig. 3. This shows the synchronization of (7)-(9) is achieved after small time. The
errors due for synchronization are plotted in Fig. 4. As expected from the above analytical considerations the synchro-
nization errors ei converge to zero as t −→ ∞.

3.2 Synchronization of three system with unknown parameters
In this subsection, for synchronization of three systems, we assume that two parameters of systems is unknown. For
instance, we consider 

ẋ1 = â(x2 − x1) + u1,
ẋ2 = (c− â)x1 − âx1x3 + u2,

ẋ3 = x1x2 − b̂x3 + u3,
(14)

 ẏ1 = â(y2 − y1) + v1,
ẏ2 = (ĉ− â)y1 − ây1y3 + v2,
ẏ3 = y1y2 − by3 + v3,

(15)

and 
ż1 = a(z2 − z1) + w1,
ż2 = (ĉ− a)z1 − az1z3 + w2,

ż3 = z1z2 − b̂z3 + w3.
(16)
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In (14)-(16), (a, b, c) and (â, b̂, ĉ) are known and unknown parameters respectively. Errors between the three systems
(14)-(16) are defined as follow  e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3,

e4 = y1 − z1, e5 = y2 − z2, e6 = y3 − z3,
e7 = x1 − z1, e8 = x2 − z2, e9 = x3 − z3.

(17)

As mentioned earlier, for synchronizing three proposed systems, it is sufficient the error system is considered as
follows: 

ė1 = â(e2 − e1) + u1 − v1,
ė2 = (ĉ− â)e1 − ĉx1 − â(x1x3 − y1y3) + u2 − v2,

ė3 = x1x2 − y1y2 − b̂e3 − b̃y3 + u3 − v3,
ė4 = â(e5 − e4) + ã(z1 − z2) + v1 − w1,
ė5 = (ĉ− â)e4 − â(y1y3 − z1z3)− ã(z1 + x1z3) + v2 − w2,

ė6 = y1y2 − z1z2 − b̂e6 + b̃y3 + v3 − w3,

(18)

where ã = â− a, b̃ = b̂− b, and c̃ = ĉ− c.

Theorem 2 Systems (14)-(16) will be globally asymptotically synchronized for any initial condition with the following
adaptive control and estimation laws

u1 = u2 = u3 = 0,
v1 = â(e2 − e1) + e1,
w1 = v1 + â(e5 − e4) + e4 = â(e8 − e7) + e7,
v2 = (ĉ− â)e1 − â(x1x3 − y1y3) + e2,
w2 = v2 + (ĉ− â)e4 − â(y1y3 − z1z3) + e5 = (ĉ− â)e7 − â(x1x3 − z1z3) + e8,

v3 = x1x2 − y1y2 − b̂e3 + e3,

w3 = v3 − z1z2 + y1y2 − b̂e6 + e6 = x1x2 − z1z2 − b̂e9 + e9,

(19)


˙̃a = ˙̂a = −e4(z2 − z1) + e5z1 + e5z1z3,
˙̃
b =

˙̂
b = (e3 − e6)y3,

˙̃c = ˙̂c = e2x1,

(20)

where (â, b̂, ĉ) is the estimates of (a, b, c).
Proof. We define the Lyapunov function as follow:

V (t) = 1
2

∑6
i=1 e

2
i +

1
2 (ã

2 + b̃2 + c̃2). (21)

Using (18) and (19) we have:

˙V (t) = −
6∑
1

e2i < 0.

It is clear that V is positive definite and V̇ is negative definite. According to the Lyapunov stability theorem, the error
system (18) and estimation rule (20) are convergence to the equilibrium points of (18) and (20). Therefore, systems
(14)-(16) asymptotically and globally synchronized.

3.2.1 Numerical simulation for synchronization with unknown parameters

To demonstrate and verify the validity of the proposed scheme, we discuss and illustrate the numerical simulations results
for chaotic T-system (1). Systems (14)-(16) and (20) with controllers (19) are solved numerically for a = 2.1, b = 0.6,
and c = 30 with different initial conditions (x1(0), x2(0), x3(0)) = (−3,−5,−2), (y1(0), y2(0), y3(0)) = (2.5, 1, 5),
(z1(0), z2(0), z3(0)) = (7,−0.5, 0), and the initial values of the parameters estimation laws are (â(0), b̂(0), ĉ(0)) =
(5, 0.8, 27). The results of chaotic synchronization of three identical chaotic T-systems via adaptive control is shown in
Fig. 5. Synchronization of (14)-(16) is achieved after small time interval. The errors due of synchronization are plotted in
Fig. 6. As expected from the above analytical considerations the synchronization errors ei converge to zero as t −→ ∞.
Fig. 7 shows the estimates â(t), b̂(t), ĉ(t) of the unknown parameters, converge to a = 2.1, b = 0.6, and c = 30,
respectively, as t −→ ∞.
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Figure 5: Synchronization of three systems with unknown parameters.

Figure 6: Errors due for synchronization of three system with unknown parameters.
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Figure 7: Estimation of unknown parameters.

4 Secure communication among three cases
In this section, we introduce a new secure communication between three case with ring connection via masking method.
Assume that M1, M2, and M3 are the message signals, such that carrier by systems I , II , and III respectively. Systems
I , II , and III are designed according the systems (14), (15), and (16) with parameter estimation (20) and controllers (19).
Fig. 8 depicts a block diagram of the of the proposed secure communication scheme based on three coupled T-system with
known and unknown parameters. Systems are used as transmitter and receiver. Each of systems has a known parameter
and two unknown parameters. When system is a transmitter, known parameter is used as a code. In two other systems,
this parameter is unknown and will be estimated. The estimation of them are used for encoding in masking method. Also,
we use ordinary encryption with chaotic encryption.

Let T1, T2, and T3 are transmitted signals with systems I , II , and III respectively. Such that: T1 = M1 + c(k11x1 + k12x2 + k13x3),
T2 = M2 + b(k21y1 + k22y2 + k23y3),
T3 = M3 + a(k31z1 + k32z2 + k33z3),

(22)

where
∑3

j=1 kij = 1, (i = 1, 2, 3) and kij > 0. Parameters and kij are used as codes. These signals are encrypted by
chaos. By noting the synchronization of three coupled systems, we decrypt these signals. For this aim, let

R12 = T1 − ĉ(k11y1 + k12y2 + k13y3), R13 = T1 − ĉ(k11z1 + k12z2 + k13z3),

R21 = T2 − b̂(k21x1 + k22x2 + k23x3), R23 = T2 − b̂(k21z1 + k22z2 + k23z3),
R31 = T3 − â(k31x1 + k32x2 + k33x3), R32 = T3 − â(k31y1 + k32y2 + k33y3),

(23)

where Rij (i, j = 1, 2, 3) show the recovered signals by system j such that, it transferred by system i. â, b̂, and ĉ are
unknown parameters, such that estimated by parameters estimation rule.

To demonstrate and verify the validity of the proposed scheme, we present and discuss the numerical simulations
results to encrypt and decrypt of signals. Let M1 = 5|[sin(2πt)]|,

M2 = 5|[cos(3πt)]|,
M3 = 5|[cos(πt) + sin(πt)]|,

(24)

where [.] and |.| are integrate part and absolute value functions respectively. Also, let K = [Kij ] consider as follow

K = 0.1

 6 3 1
5 3 2
2 3 5

 . (25)

The result of presented method is shown in Figs. (9)-(11).
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Figure 8: Diagram of secure communication among three cases, where k1 = (k11, k12, k13), k2 = (k21, k22, k23),
k3 = (k31, k32, k33) x = (x1, x2, x3), y = (y1, y2, y3), and z = (z1, z2, z3).

Figure 9: M1 is massage signal that carried by system I , R12 and R13 are recovered signals by systems II and III , and
T1 is transmitted signal from I to II and III .

5 Conclusions

In this paper, we studied the synchronization of three identical chaotic T-system with known and unknown parameters via
nonlinear feedback and adaptive control respectively. Control laws and parameter estimation rules were satisfied in Lya-
punov stability theorem. Three chaotic systems with known and unknown parameters could be synchronized successfully.
The result of synchronization coupled chaotic systems were used for secure communications among three systems via
masking method. In used method to secure communication, known parameters, unknown parameters, affine combination
of states, and coefficients were codes for coding and decoding of signal. In this method chaotic and ordinary encryp-
tion and decryption were used in secure communication. Numerical simulations were shown the feasibility of analytical
predictions.
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Figure 10: M2 is massage Signal carried by system II , R21 and R23 are recovered signals by systems I and III , and T2

is transmitted signal from II to I and III .

Figure 11: M3 is massage Signal carried by system III , R31 and R32 are recovered signals by systems I and II , and T3

is transmitted signal from III to I and II .
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