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Abstract: In this paper, we investigate soliton wave solutions for the osn$is 2) equation with the
dispersion term by the qualitative analysis methods of planar dynamical systems. With the phase portrait
bifurcation of traveling wave system, periodic cusp wave solutions and peakon wave solutions are obtained
and the graph of the numerical simulation solutions is showed.
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1 Introduction

Rosenau and Hyman [1] gave and studiedHen; n) equations:

U+ (U™ +(U")yex =0;m> 0;1<n 3 (1.1)
Its compacton solutions were obtained and the stability of the compacton solutions were investigated by means of both
linear stability analysis as well as Lyapunov stability criteria [2, 3]. The stability of compacton solutions of fth-order non-
linear dispersive equations was studied in [4]. Then Rosenau and Hyman stu@ge?)); K (3; 3) equation further. The
solutions of theK (2; 2) equation are typical of thi€ (m; n) equation. Tian and Yin [5] introduced a fth-ord& (m;n)
equation with nonlinear dispersion to obtain multi-compaction solution. Wazwaz [6, 7] stddi®¢in) equation

ug + a(um)x +(Un)xxx =0;

with Adomian decomposition method, and obtained compacton soluticm$ot and peakon solution faa= 1. We
investigated the osmosi§(2; 2) equation:

Ut +( uz)x (Uz)xxx =0;

which is denoted a®K(2,2)in [8]. Yin, Tian and Fan studied the symmetric and non-symmetric waves of the osmosis
K (2; 2) equation [9]. Chen and Li [10] studied single peak solitary wave solutions for the equation under inhomogeneous
boundary condition. Chen, Ding and Huang [11] continued studying nonuniform continuity about the equation. Lu et al.
[12, 13] studied the soliton solutions for the other equation. To study the effect of the dispersion term, we will continue
studying the osmosiK (2; 2) equation with the dispersion term:

Ug + ( Uz)x (Uz)xxx + "Uwxx =0;

where" is a coef cient.

Three sections are organized in the paper. In section 1, the object is investigated and the method is introduced. In
section 2, by using the bifurcation method of planar dynamical system, we change the dsif@&sequation with the
dispersion term into the traveling wave system and draw the bifurcation of phase portraits. In section 3, solitary wave
solutions and periodic wave solutions are constructed in two different ways. The general explicit expression of peaked
solitary wave solutions is obtained, and the graph of the solution is given with the numerical simulation.
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2 The bifurcation of phase portraits of OK(2,2)with the dispersion term

Consider the osmosils (2; 2) equation with the dispersion term:

U +(Ud)x (U)o + "Uxx =0; (2.1)
Namely

Ui +2UUyx  BUyUyx  2UUyyyx + "Uxxx =0:
Substitutingu = ' () with = x ctinto (2.1), we get the following ODE:
cO+2m 0 g © 00 2v 004 m 00 (2.2)

Integrating (2.2) once, (2.2) becomes

c +' 2 2(! 0)2 o 00+ m 00— g;

whereg is integral constant. Le% =y, and we get a planar autonomous system

(2.3)

g+C' |2+2y2.
o -

Since the traveling wave solutions of Eq.(2.1) is determined by the phase portraits of system (2.3), the next step is to
study it. But it is not convenient to investigate (2.3) directly because there is the singularﬁné. To avoid the line
temporarily, the following transformation is introduced:

d =(" 2)d:
Under the transformation, system (2.3) becomes

d

Co(r 2y
gl =g+c '2+2y% (2.4)
If let
. o wvoel c" "2 c " 1, ]
HOY) =@ VO S o)+ (s o) 2y 25)

then both systems (2.3) and (2.4) have the same rst integral

H(y) = h:
Therefore system (2.3) should have the same topological phase portraits as system (2.4) except the straigl%t.line
Thus we can obtain the topological phase portraits of system (2.3) from those of system (2.4).
Now the bifurcation behavior of system (2.4) is considered by using the theory of planar dynamical systems. For

system (2.4), th& distribution and proper%of singular points will be showed in the following proposition.
C

LetA (5; 12 2¢" 49y andB (&—o*29;0), thenH (A )=0;

P P
H(B+) = 4—18(C+ 2+4g ")[22+2c"+12g+2 2 +4g(c ") "7;
1 P "2 " P oaoe my w2
HB )= 4( o+ @+dg+ )2 +2¢"+12g 2 P+4g(c ") "%k

LetK, = € Kp= 22088 g =" 2 ang" 6
thenK1 <K , <K 3.

Wheng > K 3, system (2.4) has two singular poitgs .

Wheng = K3, system (2.4) has two singular poirq%s; 0); (ZCZ—"; 0).

WhenK; < g <K 3, system (2.4) has four singular poits ; B
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Wheng = K1, system (2.4) has three singular poitfs -p<);($;0).

Wheng < K 1, system (2.4) has two singular poirs .

LetM (;y )be the coef cient matrix of linearized system of the system (2.4) at a singulanhgint By the theory of
planar dynamical system, we know that for a singular pgint/) of a planar system, if ("; y ) < 0then the singular point
is a saddle point; i# (;y ) > OandTrace(M (';y )) =0 thenitis a center point; # (';y ) > Oand(T(M (;y )))?
4J(;y ) > Othenitis anode; il =0 and the Poincare index of the equilibrium point is zero then it is a cusp.

According to the theory, one can see the qulowing facts:

Wheng >K3,J(B )= 4g ¢ (" ¢ c2+4g;then](B )< 0;thusB both are saddle points.

Wheng = K3, J(%-;0)= 2(" c¢)? < 0;then(%5—;0) is a saddle point.

WhenK; <g <K 3,J(A )=49g< 0;thenA both are saddle pionts.

i)Whenc>",J(B+) < OithenB. isasaddle pointi(B )= ¢ 4g+(c ") c2+4g>0,andM(B )=0;
thenB is a center point. p

ii)Whenc<",J(B )< 0;thenB isasaddlepointi(B+)= ¢ 4g+(" ¢ c2+4g>0,andM (B.)=0;
thenB. is a center point.

Wheng = K1, J(M(5;0)) =0, then(5;0) isacusp;J(A )= % < 0;A both are saddle points.

Wheng <K 1,J(A ) < 0;thenA both are saddle points.

4
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- 4
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(Dc>0"< 2cor"> 4c,c< (2c > 0,0or2c <" < 4c ¢ < (3)c>0,0<"<c orc<"< 2c
0;"> 2cor"< 4c. 0;0<"< 2cor4c<"< Z2c c<0;2c<"<corc<"< O

Figure 1: The curves and areas on the c-g plane, whereg = K1;L, :g= Ky, L3 :g= Ks.

According to the qualitative theory of dynamical systems and the results in proposition, we draw the bifurcation of
phase portraits of system (2.4) as Fig. 1 and Fig. 2. Note that system (2.3) has the same topological phase portraits as
system (2.4) except the line= :

Whenc < 0, there are similar gures to Fig.2.

3 The peakons

3.1 Peakons from the limit of solitary waves

In this section, rstly we give a lemma to indict the relationship of solitary waves of Eq. (2.1) and homoclinic orbits of
system (2.3). Secondly the information obtained from the topological phase portraits of system (2.3) is used to derive the
peakons from the limit of solitary waves corresponding to homoclinic orbits.

Lemma 1 Assume that is a homoclinic orbit of system (2.3) and its parameter expressionds' () andy = y( ),
thenu="( )with = x ctis a solitary wave solution of Eq. (2.1).
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Figure 2: The phase portrait bifurcation of system (2.4).

Proof. A traveling wave solution of Eq. (2.1) is called a solitary wave (f ) has a well-de ned limit a§ j approaches

in nity. Usually, a solitary wave solution of Eq. (2.1) corresponds to a homoclinic orbit of system (2.3). Similarly, a
periodically traveling wave solution of (2.1) corresponds to a periodic orbit of system (2.3). From the Fig. 2 (3), we
see that surrounds'(1+, 0) and connects with (, , 0), or surroqus (1 , 0) and connects with (., 0) (Fig. 3).
()= c e

2
On the other hand, = ' () is the solution of system (2.4). This implies=
="' (x ct)isthe solitary wave solution of Eq.(2.1k

Therefore, lim 1+ 0or lim "()="'"1 ,where'; =
I i

' () is the solution of Eq.(2.2). Thus
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Figure 4: The peaked solitary wave

Figure 3: The homoclinic orbit of system (2.4). solution for Eq. (2.1)c=1;" =5.
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In Fig. 3 the homoclinic orbit can be representedddsy ) = H(' 1 ;0). Namely

@ "2+ & %)+(g ) Y 2eyi= L( c+ P +4g+ ")2[2c2 +2¢" +12g 2p 2+4g(c ") "2 (3.1)
From (3.1), lety =0, " ,+ can be obtained.

HaveH (;y ) = H(' 1+;0), Namely

@ ARG+ S (S ) Y2y = A(c+ P 2 +4g ")2[2c2+2c"+1zg+2p Z+4g(c ") " (3.2)

From (3.2), lety =0, and' , can be obtained.
Substituting o+ and' » into the rst equation of system (2.4) and integrating along the homoclinic orbits, we get

R p

+ B6(" 2')d — i i.m
g . ¢ 2) = ji"> 4 (3.3)
c4+6 c2g+6 g2+( c2+4g)2(c ") c3" 6cg"+12gm 129 2+6¢" 2 8¢ 3 4™ 3+46' 4
R P oy
g 6(" 2')d —_ i s
b, =] 1" (3.4)

3
c4+6 c2g+6 g2 (c2+4g)2(c ") c3" 6cg"+12g™ 129 2+6¢" 2 8¢ 3 4™ 3+46' 4

Note that the following facts: Wheki; < g <K , andg! K, whereK; = %; Ky = % the limiting
cures of such homoclinic orbits of system (2.4) is a triangle with the following three line segments(Fig. 3), and two
diagonal lines are expressed by

1, 4 "
y= Q( T)
LettingK; <g <K zandg! Ko, in(3.3)and (3.4), we get

2 L. 4 "
O30 Qe 1+ C6 ;
which implies that the Eq.(2.1) has peakons
ur(x;t) = g(" Qe zix iy 4CT: (3.5)

Obviouslyu has peaks at ct = 0. The peakons expressed bygx;t) are shown in Fig. 4 under some parameter
conditions.

3.2 Peakons from the limit of periodic cusp waves

In this section, rstly the relationship of periodic waves of Eq. (2.1) and periodic orbits of system (2.3) is given, secondly
the information obtained from the topological phase portraits is used to derive the peakons from the limit of periodic cusp
waves corresponding to periodic orbits. Similar to Lemma 1, we have

Lemma 2 Assume that is a periodic orbit of system (2.3) and its parameter expressionds' ( ) andy = y( ), then
u="()with = x ctisa periodic wave solution of (2.1).

From Fig. 2 (1) it is seen that whefi, < g < K 3, the system (2.3) has a periodic orbit which consist of an arc and a
line segment (Fig. 5).

In Fig. 5 the periodic orbit can be expressed

1 1 1 1 ¢ "2
2L, 2 1. 1 .¢ 7. .
y'=7° G ) S0t g 5 (3.6)
and' = ;,where' 3 = 4 Zq A2e a8 ciid6g

Note thatwheK ; < g <K zandg! K, the periodic orbits lose their smoothness and become non-smooth periodic
orbits, and wherg = K, the periodic orbits become periodic cusp orbits. Substituting (3.6) into the rst equation of
system (2.3) and integrating along the periodic orbit, we get

Uz( ) = vi( +2nT); c>"
2L77 0 yy( +2nT): c<™

IINS email for contributioneditor@nonlinearscience.org.uk



C. Xu et al.: The Peakons and Periodic Cusp Waves Solutions of the Osmosis K(2,2) Equation with the Dispersion Term127

2 |
P R

{
—
cn

y
/

<
olaca.d 1802
00,51 1.52 2.5 =)
%-_1%\ _’_,_,_,—'—'_:':T_. .
_2 [ _1.5 0.
Sl I " “vaq P
£ de £o-lp T AT ETESTER TS s

Figure 5: The periodic orbit of system (2.4) when Figure 6: The periodic cusp wave solution for Eg.
Ky<g<K 3. (2.1):c=1;" =5.

wheren=0; 1, 2, ;and 2[(2n 1)T;(2n+1)T].
r

4 " " C "2 3¢ 49, .. " ¢C "2 2" 4g. .
= + + 2l )+ 2l
vi( ) 6 ( 3 3 )e? ( 3 8 e 2,
r. r.
4C n " C ||2 2Cn 4g I n C ||2 2Cu 4g P
- + 2]+ + 211
va( ) 6 ( 3 r 8 )e? ( 3 r 3 e 2,
"24+2c" +8c2 + 369 "¢ "2 2" 4g
< <1, = +
T ;T =2 In( =5 ) In 3 8
WhenK, <g <K 3, andc>",letg! K thenT I1 ; ¢+ =2 491 0and¢ ¢ 49y 2%
WhenK, <g <K 3,andc <", letg! K thenT!1 ; ¢ 2249, gng’c+ =22 40, 2 2

From above discussion one sees that wken< g < K 3 andg! K, the periodic wave solutions ( )andv,( )
tend to the peakons

_ 2. ijj "
u2( )1 w()= 30 ge Bl =
The result (3.7) is identical to (3.5). The graph of some periodic wave for Eg. (2.1) is shown under some parameter
condition (Fig. 6).

From Fig. 6 one can see that wher 1;" = 5, the period of periodic waves slowly become big. The period waves
slowly lose their smoothness and become the periodic cusp wave. Finally the periodic cusp waves become the peakons
and their periods become in nite.

4c

(3.7)

4 Conclusion

In this paper the qualitative analysis methods of dynamical system are used to investigate the peaked wave solutions
Eg. (2.1). By the phase portrait bifurcation of the traveling wave system, We obtain the peaked solitary wave solution:

us( )= 2(" c)e # 1+ %" and the periodic cusp wave solution:
Ua( ) = ng :gﬂg EZ:: —0; 1 2 2[@2n DT:@n+1)T]
wO= 20 T B (L0 R B0,
e err 2 |n(r --2+20"7+28c2+369) In " 3C+f --22;--4g

Finally whenK, <g <K zandg! Kj,the periodic wave solutions( ) tend to the peakons;( ).

IINS homepagehttp://www.nonlinearscience.org.uk/



128 International Journal of Nonlinear Science, Vol.26(2018), No.2, pp. 122-128

Acknowledgements

The present work was supported by the National Nature Science Foundation of China (N0.11171135,11101189, 71673116),
and Jiangsu Province 2012 Graduate Research Innovation Project (No. CXQ65B).

References
[1] P. Rosenau and J. M. Hyman. Compactons: Solutions with nite wavelenBtigs. Rev. Lett70(5)(1993): 564—
567.
[2] P. Rosenau. On nonanalytic solitary waves formed by a nonlinear dispeRys. Lett. A230(5/6)(1997): 305—
318.

[3] P. Rosenau. On a class of nonlinear dispersive-dissipative interadfibys, D 123(1/4)(1998): 525-546.

[4] B. Dey and A. khare. Stability of compacton solutions of fth-order nonlinear dispersive equalfidky. A. Math.
Gen,33(2000): 5335-5344.

[5] L.X. Tian and J.L. Yin. Stability of muti-compacton solutions and Backlund transformati&n(in; n; 1). Chaos,
Solitons and Fractals23(2005): 159-169.

[6] A. M. Wazwaz. Compactons dispersive structures for variants of the K(n,n) and the KP equé@tiains, Solitons
and Fractals 13(2002): 1052-1062.

[7] A. M. Wazwaz. General compactons solutions for the focusing branch of the nonlinear dispersive K(n,n) equations
in higher-dimensional space8pplied Mathematics and Computatick83(2002): 213-227.

[8] C.H. Xu and L.X. Tian. The bifurcation and peakon for K(2,2) equation The bifurcation and peakon for K(2,2)
equation with osmosis dispersioBhaos, Solitons and Fractald0(2009): 893—-901.

[9] J.L.Yin, L.X. Tian and X.H. Fan. Symmetric and non-symmetric waves in Symmetric and non-symmetric waves in
the osmosis K(2,2) equatio@omputers & Mathematics with Applicatiqris9(8)(2010): 2756—-2762.

[10] A.Y. Chen and J.B. Li. Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous
boundary conditionJournal of Mathematical Analysis & Application369(2)(2010): 758-766.

[11] A.Y. Chen, Y. Ding and W.T. Huang. Nonuniform Continuity of the Osmaosis K(2,2) Equafibetract and Applied
Analysis 108(2013): 1-8.

[12] A. Ali, A. Seadawy and D. Lu. Soliton solutions of the nonlinear $climger equation with the dual power law non-
linearity and resonant nonlinear Sodinger equation and their modulation instability analy€ptik, 145(2017):
79-88.

[13] D. Lu, A. Seadawy and M. Arshad. Applications of extended simple equation method on unstable nonlinear
Schrodinger equation©ptik, 140(2017): 136-144.

IINS email for contributioneditor@nonlinearscience.org.uk



