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Abstract: In this paper, we investigate soliton wave solutions for the osmosisK (2; 2) equation with the
dispersion term by the qualitative analysis methods of planar dynamical systems. With the phase portrait
bifurcation of traveling wave system, periodic cusp wave solutions and peakon wave solutions are obtained
and the graph of the numerical simulation solutions is showed.
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1 Introduction

Rosenau and Hyman [1] gave and studied theK (m; n) equations:

ut + ( um )x + ( un )xxx = 0 ; m > 0; 1 < n � 3: (1.1)

Its compacton solutions were obtained and the stability of the compacton solutions were investigated by means of both
linear stability analysis as well as Lyapunov stability criteria [2, 3]. The stability of compacton solutions of �fth-order non-
linear dispersive equations was studied in [4]. Then Rosenau and Hyman studiedK (2; 2); K (3; 3) equation further. The
solutions of theK (2; 2) equation are typical of theK (m; n) equation. Tian and Yin [5] introduced a �fth-orderK (m; n)
equation with nonlinear dispersion to obtain multi-compaction solution. Wazwaz [6, 7] studiedK (m; n) equation

ut + a(um )x + ( un )xxx = 0 ;

with Adomian decomposition method, and obtained compacton solution fora = 1 and peakon solution fora = � 1. We
investigated the osmosisK (2; 2) equation:

ut + ( u2)x � (u2)xxx = 0 ;

which is denoted asOK(2,2) in [8]. Yin, Tian and Fan studied the symmetric and non-symmetric waves of the osmosis
K (2; 2) equation [9]. Chen and Li [10] studied single peak solitary wave solutions for the equation under inhomogeneous
boundary condition. Chen, Ding and Huang [11] continued studying nonuniform continuity about the equation. Lu et al.
[12, 13] studied the soliton solutions for the other equation. To study the effect of the dispersion term, we will continue
studying the osmosisK (2; 2) equation with the dispersion term:

ut + ( u2)x � (u2)xxx + "u xxx = 0 ;

where" is a coef�cient.
Three sections are organized in the paper. In section 1, the object is investigated and the method is introduced. In

section 2, by using the bifurcation method of planar dynamical system, we change the osmosisK (2; 2) equation with the
dispersion term into the traveling wave system and draw the bifurcation of phase portraits. In section 3, solitary wave
solutions and periodic wave solutions are constructed in two different ways. The general explicit expression of peaked
solitary wave solutions is obtained, and the graph of the solution is given with the numerical simulation.
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2 The bifurcation of phase portraits of OK(2,2)with the dispersion term

Consider the osmosisK (2; 2) equation with the dispersion term:

ut + ( u2)x � (u2)xxx + "u xxx = 0 ; (2.1)

Namely

ut + 2uux � 6ux uxx � 2uuxxx + "u xxx = 0 :

Substitutingu = ' (� ) with � = x � ct into (2.1), we get the following ODE:

� c' 0+ 2 '' 0 � 6' 0' 00� 2'' 000+ "' 000= 0 ; (2.2)

Integrating (2.2) once, (2.2) becomes

� c' + ' 2 � 2(' 0)2 � 2'' 00+ "' 00= g;

whereg is integral constant. Letd'
d� = y, and we get a planar autonomous system

(
d'
d� = y;
dy
d� = g+ c' � ' 2 +2 y2

" � 2' :
(2.3)

Since the traveling wave solutions of Eq.(2.1) is determined by the phase portraits of system (2.3), the next step is to
study it. But it is not convenient to investigate (2.3) directly because there is the singular line' = "

2 . To avoid the line
temporarily, the following transformation is introduced:

d� = ( " � 2' )d�:

Under the transformation, system (2.3) becomes

� d'
d� = ( " � 2' )y;
dy
d� = g + c' � ' 2 + 2y2:

(2.4)

If let

H ('; y ) = (2 ' � " )2[
1
2

(g +
c"
6

�
"2

24
) + (

c
3

�
"
12

)' �
1
4

' 2 + y2]; (2.5)

then both systems (2.3) and (2.4) have the same �rst integral

H ('; y ) = h:

Therefore system (2.3) should have the same topological phase portraits as system (2.4) except the straight line' = "
2 .

Thus we can obtain the topological phase portraits of system (2.3) from those of system (2.4).
Now the bifurcation behavior of system (2.4) is considered by using the theory of planar dynamical systems. For

system (2.4), the distribution and property of singular points will be showed in the following proposition.

Let A � ( "
2 ; �

q
� " 2 � 2c" � 4g

8 ) andB � ( c�
p

c2 +4 g
2 ; 0), thenH (A � ) = 0 ;

H (B+ ) =
1
48

(c +
p

c2 + 4g � " )2[2c2 + 2c" + 12g + 2
p

c2 + 4g(c � " ) � "2];

H (B � ) =
1
48

(� c +
p

c2 + 4g + ")2[2c2 + 2c" + 12g � 2
p

c2 + 4g(c � " ) � "2]:

Let K 1 = � c2

4 ; K 2 = " 2 � 2c" � 8c2

36 ; K 3 = " 2 � 2c"
4 and" 6= c,

thenK 1 < K 2 < K 3.
Wheng > K 3, system (2.4) has two singular pointsB � .
Wheng = K 3, system (2.4) has two singular points( "

2 ; 0); ( 2c� "
2 ; 0).

WhenK 1 < g < K 3, system (2.4) has four singular pointsA � ; B � .
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Wheng = K 1, system (2.4) has three singular points( "
2 ; � " � c

2
p

2
); ( c

2 ; 0).
Wheng < K 1, system (2.4) has two singular pointsA � .
Let M ('; y )be the coef�cient matrix of linearized system of the system (2.4) at a singular point('; y ). By the theory of

planar dynamical system, we know that for a singular point('; y) of a planar system, ifJ ('; y ) < 0 then the singular point
is a saddle point; ifJ ('; y ) > 0 andT race(M ('; y )) = 0 then it is a center point; ifJ ('; y ) > 0 and(T(M ('; y ))) 2 �
4J ('; y ) > 0 then it is a node; ifJ = 0 and the Poincare index of the equilibrium point is zero then it is a cusp.

According to the theory, one can see the following facts:
Wheng > K 3, J (B � ) = � 4g � c2 � (" � c)

p
c2 + 4g; thenJ (B � ) < 0; thusB � both are saddle points.

Wheng = K 3, J ( 2c� "
2 ; 0) = � 2(" � c)2 < 0; then( 2c� "

2 ; 0) is a saddle point.
WhenK 1 < g < K 3, J (A � ) = 4 g < 0; thenA � both are saddle pionts.
i ) Whenc > " , J (B+ ) < 0;thenB+ is a saddle point;J (B � ) = � c2 � 4g+ ( c� " )

p
c2 + 4g > 0, andM (B � ) = 0 ;

thenB � is a center point.
ii ) Whenc < " , J (B � ) < 0; thenB � is a saddle point;J (B+ ) = � c2 � 4g+( " � c)

p
c2 + 4g > 0, andM (B+ ) = 0 ;

thenB+ is a center point.

Wheng = K 1, J (M ( c
2 ; 0)) = 0 , then( c

2 ; 0) is a cusp;J (A � ) = � ( " � c)2

8 < 0; A � both are saddle points.
Wheng < K 1, J (A � ) < 0; thenA � both are saddle points.

(1)c > 0, " < � 2c or " > 4c; c <
0; " > � 2c or " < 4c.

(2)c > 0, or 2c < " < 4c; c <
0; 0 < " < � 2c or 4c < " < 2c.

(3)c > 0, 0 < " < c or c < " < 2c;
c < 0; 2c < " < c or c < " < 0.

Figure 1: The curves and areas on the c-g plane, whereL 1 : g = K 1; L 2 : g = K 2; L 3 : g = K 3.

According to the qualitative theory of dynamical systems and the results in proposition, we draw the bifurcation of
phase portraits of system (2.4) as Fig. 1 and Fig. 2. Note that system (2.3) has the same topological phase portraits as
system (2.4) except the line' = "

2 :

Whenc < 0, there are similar �gures to Fig.2.

3 The peakons

3.1 Peakons from the limit of solitary waves

In this section, �rstly we give a lemma to indict the relationship of solitary waves of Eq. (2.1) and homoclinic orbits of
system (2.3). Secondly the information obtained from the topological phase portraits of system (2.3) is used to derive the
peakons from the limit of solitary waves corresponding to homoclinic orbits.

Lemma 1 Assume that� is a homoclinic orbit of system (2.3) and its parameter expression is' = ' (� ) andy = y(� ),
thenu = ' (� ) with � = x � ct is a solitary wave solution of Eq. (2.1).

IJNS email for contribution:editor@nonlinearscience.org.uk



C. Xu et al.: The Peakons and Periodic Cusp Waves Solutions of the Osmosis K(2,2) Equation with the Dispersion Term125

(1)(c; g) 2 II; c > 0,
" > 4c.

(2)(c; g) 2 II; c > 0;
" < � 2c.

(3)(c; g) 2 L 2; c > 0;
" > 4c.

(4)(c; g) 2 L 2; c > 0;
" < � 2c.

(5)(c; g) 2 III; c > 0;
" > 4c.

(6)(c; g) 2 III; c > 0;
" < � 2c.

(7)(c; g) 2 L 1; c > 0;
" > 4c.

(8)(c; g) 2 L 1; c > 0;
" < � 2c.

Figure 2: The phase portrait bifurcation of system (2.4).

Proof. A traveling wave solution of Eq. (2.1) is called a solitary wave if' (� ) has a well-de�ned limit asj� j approaches
in�nity. Usually, a solitary wave solution of Eq. (2.1) corresponds to a homoclinic orbit of system (2.3). Similarly, a
periodically traveling wave solution of (2.1) corresponds to a periodic orbit of system (2.3). From the Fig. 2 (3), we
see that� surrounds (' 1+ , 0) and connects with (' 1� , 0), or surrounds (' 1� , 0) and connects with (' 1+ , 0) (Fig. 3).

Therefore, lim
j � j!1

' (� ) = ' 1+ or lim
j � j!1

' (� ) = ' 1� , where' 1� = c�
p

c2 +4 g
2 .

On the other hand,' = ' (� ) is the solution of system (2.4). This implies' = ' (� ) is the solution of Eq.(2.2). Thus
u = ' (x � ct) is the solitary wave solution of Eq.(2.1).

Figure 3: The homoclinic orbit of system (2.4).
Figure 4: The peaked solitary wave
solution for Eq. (2.1):c = 1 ; " = 5 .
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In Fig. 3 the homoclinic orbit can be represented asH ('; y ) = H (' 1� ; 0). Namely

(2' � " )2[ 1
2 (g + c"

6 � " 2

24 ) + ( c
3 � "

12 )' � 1
4 ' 2 + y2] = 1

48 (� c +
p

c2 + 4g + ")2[2c2 + 2c" + 12g � 2
p

c2 + 4g(c � " ) � "2]: (3.1)

From (3.1), lety = 0 , ' 2+ can be obtained.
HaveH ('; y ) = H (' 1+ ; 0), Namely

(2' � " )2[ 1
2 (g + c"

6 � " 2

24 ) + ( c
3 � "

12 )' � 1
4 ' 2 + y2] = 1

48 (c +
p

c2 + 4g � " )2[2c2 + 2c" + 12g + 2
p

c2 + 4g(c � " ) � "2]: (3.2)

From (3.2), lety = 0 , and' 2� can be obtained.
Substituting' 2+ and' 2� into the �rst equation of system (2.4) and integrating along the homoclinic orbits, we get

R' 2+

'

p
6( " � 2' )d'q

c4 +6 c2 g+6 g2 +( c2 +4 g)
3
2 (c� " ) � c3 " � 6cg" +12 g"' � 12g' 2 +6 c"' 2 � 8c' 3 � 4"' 3 +6 ' 4

= � j � j ; " > 4c (3.3)

R'
' 2 �

p
6( " � 2' )d'q

c4 +6 c2 g+6 g2 � (c2 +4 g)
3
2 (c� " ) � c3 " � 6cg" +12 g"' � 12g' 2 +6 c"' 2 � 8c' 3 � 4"' 3 +6 ' 4

= � j � j ; " < � 2c (3.4)

Note that the following facts: WhenK 1 < g < K 2 andg ! K 2, whereK 1 = � c2

4 ; K 2 = " 2 � 2c" � 8c2

36 ; the limiting
cures of such homoclinic orbits of system (2.4) is a triangle with the following three line segments(Fig. 3), and two
diagonal lines are expressed by

y = �
1
2

(' �
4c � "

6
):

LettingK 1 < g < K 2 andg ! K 2, in (3.3) and (3.4), we get

' (� ) !
2
3

(" � c)e� 1
2 j � j +

4c � "
6

;

which implies that the Eq.(2.1) has peakons

u1(x; t ) =
2
3

(" � c)e� 1
2 j x � ct j +

4c � "
6

: (3.5)

Obviouslyu has peaks atx � ct = 0 . The peakons expressed byu(x; t ) are shown in Fig. 4 under some parameter
conditions.

3.2 Peakons from the limit of periodic cusp waves

In this section, �rstly the relationship of periodic waves of Eq. (2.1) and periodic orbits of system (2.3) is given, secondly
the information obtained from the topological phase portraits is used to derive the peakons from the limit of periodic cusp
waves corresponding to periodic orbits. Similar to Lemma 1, we have

Lemma 2 Assume that� is a periodic orbit of system (2.3) and its parameter expression is' = ' (� ) andy = y(� ), then
u = ' (� ) with � = x � ct is a periodic wave solution of (2.1).

From Fig. 2 (1) it is seen that whenK 2 < g < K 3, the system (2.3) has a periodic orbit which consist of an arc and a
line segment (Fig. 5).

In Fig. 5 the periodic orbit can be expressed

y2 =
1
4

' 2 � (
1
3

c �
1
12

")' �
1
2

(g +
c"
6

�
"2

24
); (3.6)

and' = "
2 , where' 3� = 4c� "

6 � 2
q

� " 2 +2 c" +8 c2 +36 g
72 .

Note that whenK 2 < g < K 3 andg ! K 2, the periodic orbits lose their smoothness and become non-smooth periodic
orbits, and wheng = K 2, the periodic orbits become periodic cusp orbits. Substituting (3.6) into the �rst equation of
system (2.3) and integrating along the periodic orbit, we get

u2(� ) =
�

v1(� + 2nT );
v2(� + 2nT );

c > ";
c < ":
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Figure 5: The periodic orbit of system (2.4) when
K 2 < g < K 3.

Figure 6: The periodic cusp wave solution for Eq.
(2.1): c = 1 ; " = 5 .

wheren = 0 ; � 1; � 2; � � � ; and� 2 [(2n � 1)T; (2n + 1) T].

v1(� ) =
4c � "

6
+ (

" � c
3

+

r
"2 � 2c" � 4g

8
)e

1
2 j � j + (

" � c
3

�

r
"2 � 2c" � 4g

8
)e� 1

2 j � j ;

v2(� ) =
4c � "

6
+ (

" � c
3

�

r
"2 � 2c" � 4g

8
)e

1
2 j � j + (

" � c
3

+

r
"2 � 2c" � 4g

8
)e� 1

2 j � j ;

� T < � < T; T = 2

�
�
�
�
�
ln(

r
� "2 + 2c" + 8c2 + 36g

72
) � ln

�
�
�
�
�
" � c

3
+

r
"2 � 2c" � 4g

8

�
�
�
�
�

�
�
�
�
�
:

WhenK 2 < g < K 3, andc > " , letg ! K 2, thenT ! 1 ; " � c
3 +

q
" 2 � 2c" � 4g

8 ! 0, and" � c
3 �

q
" 2 � 2c" � 4g

8 ! 2" � 2c
3 .

WhenK 2 < g < K 3, andc < " , letg ! K 2, thenT ! 1 ; " � c
3 �

q
" 2 � 2c" � 4g

8 ! 0, and" � c
3 +

q
" 2 � 2c" � 4g

8 ! 2" � 2c
3 .

From above discussion one sees that whenK 2 < g < K 3 andg ! K 2, the periodic wave solutionsv1(� )andv2(� )
tend to the peakons

u2(� ) ! u1(� ) =
2
3

(" � c)e� 1
2 j � j +

4c � "
6

; (3.7)

The result (3.7) is identical to (3.5). The graph of some periodic wave for Eq. (2.1) is shown under some parameter
condition (Fig. 6).

From Fig. 6 one can see that whenc = 1 ; " = 5 , the period of periodic waves slowly become big. The period waves
slowly lose their smoothness and become the periodic cusp wave. Finally the periodic cusp waves become the peakons
and their periods become in�nite.

4 Conclusion

In this paper the qualitative analysis methods of dynamical system are used to investigate the peaked wave solutions
Eq. (2.1). By the phase portrait bifurcation of the traveling wave system, We obtain the peaked solitary wave solution:
u1(� ) = 2

3 (" � c)e� 1
2 j � j + 4c� "

6 and the periodic cusp wave solution:

u2(� ) =
�

v1(� + 2nT )
v2(� + 2nT )

c > "
c < "

; n = 0 ; � 1; � 2; � � � ; � 2 [(2n � 1)T; (2n + 1) T]

v1(� ) =
4c � "

6
+ (

" � c
3

+

r
"2 � 2c" � 4g

8
)e

1
2 j � j + (

" � c
3

�

r
"2 � 2c" � 4g

8
)e� 1

2 j � j ;

v2(� ) =
4c � "

6
+ (

" � c
3

�

r
"2 � 2c" � 4g

8
)e

1
2 j � j + (

" � c
3

+

r
"2 � 2c" � 4g

8
)e� 1

2 j � j ;

� T < � < T; T = 2

�
�
�
�
�
ln(

r
� "2 + 2c" + 8c2 + 36g

72
) � ln

�
�
�
�
�
" � c

3
+

r
"2 � 2c" � 4g

8

�
�
�
�
�

�
�
�
�
�
:

Finally whenK 2 < g < K 3 andg ! K 2, the periodic wave solutionsu2(� ) tend to the peakonsu1(� ).
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