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Abstract: In this paper, we study the number and distributions of limit cycles in a Z3-equivariant quintic
planar polynomial system. At least 23 limit cycles are found in this system by using the bifurcation methods
of double homoclinic loops and Poincare-Bendixson Theorem. The configurations and number of these limit
cycles obtained in the above Z3-equivariant planar system are new. The results obtained are useful to the
study of weakened Hilbert’s 16th Problem.
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1 Introduction
It is well known that the great Russian mathematician Arnold [1] posed the weakened Hilbert’s 16th Problem in 1977. It
is to find the maximal number and relative positions of limit cycles of the planar polynomial vector field:

ẋ =
∂H(x, y)

∂y
+ εPn(x, y),

ẏ = −∂H(x, y)

∂x
+ εQn(x, y), (1)

where H(x, y) are polynomials of degree n+ 1, Pn and Qn are polynomials of degree n.
Up to now, many mathematicians have study this problem, but the existence of H(n) is still an open problem, where

H(n) stands for the supremum of the number of limit cycles for system (1). Some results of these mathematicians are
concluded as follow: H(2) ≥ 4, H(3) ≥ 13, H(4) ≥ 20 (see [2][3][4][18][19][20] for more details).

As to quintic planar polynomial system, there also are some results. In [5], Zhao Liqin obtained at least 23 limit cycles
for a Z3 equivariant near-Hamiltonian system of degree 5 which is the perturbation of a Z6 equivariant quintic Hamiltonian
system. Li et al.[6] studied a Z6 equivariant perturbed Hamiltonian planar polynomial vector field of degree 5 and found
that there exist at least 24 limit cycles. In [7], at least 24 limit cycles were found and two different configurations of them
were given in a quintic Z3 equivariant near-Hamiltonian system by Y.Wu. In [8, 9], it was obtained that there were at least
25 limit cycles in Zq equivariant near-Hamiltonian system of degree 5 where q = 2, 5. It was shown in [10] that there
were at least 28 limit cycles with four different configurations in a Z2 equivariant quintic planar vector field.

In this paper, the following near Hamiltonian system is considered

ẋ =
∂H(x, y)

∂y
+ εP5(x, y),

ẏ = −∂H(x, y)

∂x
+ εQ5(x, y), (2)

where ε > 0 and small,

H(x, y) = −3x2

2
− 113x3

250
− 3y2

2
− 2x6

3
+

339xy2

250
+ 8x2y2 − 5x4y2 + 4x4 + 4y4 − y6, (3)
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the quintic polynomials P5(x, y) Q5(x, y) are given in the following forms

P5(x, y) = a1x+ a2(x
3 + xy2) + a3(x

5 + 2x3y2 + xy4) + a4(x
4 − 6x2y2 + y4)

+ a6(x
4 − y4) + a7(10x

2y3 − 5x4y − y5) + b4(xy
3 − 4x3y)

+ b6(2xy
3 + 2x3y);

Q5(x, y) = a1y + a2(x
2y + y3) + a3(x

4y + 2x2y3 + y5) + a4(4x
3y − 4xy3)

− a6(2x
3y + 2xy3) + a7(x

5 − 10x3y2 + 5xy4) + b4(x
4 − 6x2y2 + y4)

+ b6(x
4 − y4).

Here we consider the real coefficients ai, bj , i = 1, 2, 3, 4, 6, 7, j = 4, 6 as parameters.
From [11], we know that the vector field defined by (P5(x, y), Q5(x, y)) is invariant under 2π/3 rotation with respect

to the origin O, so it is easy to check that system (2) is Z3 equivariant. Furthermore, we know that system (2) is a
Hamiltonian system if and only if a1 = 0, a2 = 0, a3 = 0, 4a4 + a6 = 0, 4b4 − b6 = 0. It is well known that a
Hamiltonian system does not have any limit cycles. Hence, in this paper we assume that

a21 + a22 + a23 + (4a4 + a6)
2 + (4b4 − b6)

2 ̸= 0. (4)

This paper is arranged as follows. In section 2, we will give the phase portraits of the unperturbed system (2)|ε=0

and make some descriptions of the unperturbed system. Section 3 gives some preliminary lemmas about the existence
conditions of double homoclinic loops and the small homoclinic loops of system (2). We give the main results and their
proof by using the method of changing the stabilities of double homoclinic loops in section 4. In section 5, we give the
conclusion.

2 Phase portraits of unperturbed system
The unperturbed system of system (2) is a Hamiltonian system which has the form

ẋ = −3y +
339xy

125
+ 16x2y − 10x4y + 16y3 − 6y5,

ẏ = 3x+
339x2

250
− 16x3 + 4x5 − 339y2

250
− 16xy2 + 20x3y2. (5)

It is easy to check that unperturbed system (5) has 19 singular points by solving polynomial equations, which are 9
centers Ai(i = 1, 2, · · · , 9 ) and 9 saddle points Si(i = 1, 2, · · · , 9) and the origin O. The coordinates of these singular
points are listed as follows:

A1(xA1 , yA1), S1(xS1 , yS1), A7(−xA7 , −yA7),

A2(−xA2
, yA2

), S2(−xS2
, yS2

), A8(−xA7
, yA7

),

A3(−xA3 , 0), S3(−xS3 , yS3), A9(xA9 , 0),

A4(−xA2 , −yA2), S4(−xS3 , −yS3), S7(−0.4, 0),

A5(xA1 , −yA1), S5(−xS2 , −yS2), S8(0.2, yS8),

A6(xA6 , 0), S6(xS1 , −yS1), S9(0.2, −yS8),

where xA1

.
= 0.997688, yA1

.
= 1.72805, xA2

.
= 0.950548, yA2

.
= 1.6464, xA3

.
= 1.99538, xA6

.
= 1.9011, xA7

.
=

0.24714, yA7

.
= 0.428059, xA9

.
= 0.49428, xS1

.
= 1.40307, yS1

.
= 0.70365, xS2

.
= 0.092154, yS2

.
= 1.56692,

xS3

.
= 1.31091, yS3

.
= 0.863267, yS8

.
= 0.34641.

Remark 1 From [11], it is easy to check that the unperturbed system (5) is Z3-equivariant.

IJNS email for contribution: editor@nonlinearscience.org.uk



W.Zhu and Y. Wu: Bifurcations of Limit Cycles in A Z3-Equivariant Planar Vector Field of Degree 5 55

To plot the phase portraits of system (5), we list the representative orbits of system (5) in the following.
System (5) is a Hamiltonian system, and it has the first integral of the form H(x, y) = h, where function H(x, y) is

defined in (3). Then we have H(O) = 0, H(Si) = h3, H(Sj) = h2, H(Am) = h4, H(An) = h5, H(Aj) = h1, i =
1, 2, · · · , 6, j = 7, 8, 9, m = 2, 4, 6, n = 1, 3, 5, where h1

.
= −0.192019, h2

.
= −0.111403, h3

.
= 5.47628, h4

.
=

12.2493, h5
.
= 18.9507.

The level curve defined by H(x, y) = h3 consists of the six saddle points Si and six heteroclinic loops denoted by
Γh3
i,j ∪ Γh3

j,i (j = i+ 1 as i = 1, 2, · · · , 6 and j = 1 as i = 6), where Γh3
i,j represents the saddle connection between Si and

Sj with the direction from point Si to point Sj . Every heteroclinic loops Γh3
i,j ∪Γh3

j,i embraces the focus Ai(i = 1, 2, · · · , 6
and j = 1 as i = 6). Similarly, the level curve which is defined by H(x, y) = h2 consists of the three saddle points Si and
five heteroclinic loops which are denoted by Γh2

i,j ∪ Γh2
j,i(j = i+ 1 as i = 7, 8, and j = 7 as i = 9) and Γh2

7,9 ∪ Γh2
9,8 ∪ Γh2

8,7

and Γh2
9,7 ∪ Γh2

8,9 ∪ Γh2
7,8. Every heteroclinic loops Γh2

i,j ∪ Γh2
j,i embraces the focus Ai( i = 7, 8, 9).

Then we denote the close orbit of the unperturbed system (5) by Γ : H(x, y) = h, and these close orbits have the
following properties.

(i) If h < h3, the close orbit Γ : H(x, y) = h shrinks as h increases, and surrounds all the singular points of the
unperturbed system (5).

(ii) If h2 < h < h3, the close orbit Γ : H(x, y) = h expands as h increases, and surrounds O, Ai, Si( i = 7, 8, 9).
(iii) If h2 < h < 0, the close orbit Γ : H(x, y) = h shrinks as h increases, and only surrounds the origin O.
(iv) If h1 < h < h2, the close orbit Γ : H(x, y) = h expands as h increases, and only surrounds the single singular

point Ai( i = 7, 8, 9) respectively.
(v) If h3 < h < h5, the close orbit Γ : H(x, y) = h shrinks as h increases, and only surrounds the single singular

point Ai( i = 1, 2, · · · , 6) respectively.
From the above analysis, we obtain the phase portraits of unperturbed system (5) in Figure 1.

Figure 1: The phase portraits of unperturbed system (5)

3 Preliminary lemmas
As 0 < ε ≪ 1, system (2) can be regarded as perturbation of system (5). After perturbation, it is easy to find that the

number of singular points is preserved, so system (2) still has 19 singular points. Denote the singular points of system
(2) by Ai(ε), Si(ε) which near Ai, Si, i = 1, 2, · · · , 9. Generally speaking, the saddle connections Γi,i+1, Γi+1,i, (i =
1, 2, · · · , 9) of system (5) will break after perturbation. Denote Γs

Si(ε)
, Γu

Si(ε)
the stable and unstable manifold of saddle

point Si(ε). From [7], we know that the distance between Γs
Si+1(ε), Γ

u
Si(ε)

is d(ε,Γi,j) = εNi,j ·M(Γi,j)+O(ε2)(Ni,j >

0, 0 < ε ≪ 1, j=i+1), and M(Γi,j) is called Melnikov function of the saddle connections Γi,j , which is defined by the
following function

M(Γi,j) =

∫
Γi,j

Q5(x, y)dx−
∫
Γi,j

P5(x, y)dy. (6)

Then we obtain the following results.
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Lemma 1 Melnikov functions of system (2) satisfy the following equations

M(Γ1,6) = M(Γ5,4) = M(Γ3,2), M(Γ6,1) = M(Γ4,5) = M(Γ2,3);

M(Γ3,4) = M(Γ5,6) = M(Γ1,2), M(Γ4,3) = M(Γ6,5) = M(Γ2,1);

M(Γ7,8) = M(Γ8,9) = M(Γ9,7), M(Γ8,7) = M(Γ9,8) = M(Γ7,9).

Proof. Noticing the fact that system (2) is Z3-equivariant, it is easy to prove the lemma.

From Lemma 1, we only need to compute the following six Melnikov functions: M(Γ1,6), M(Γ6,1), M(Γ3,4),
M(Γ4,3), M(Γ7,8), M(Γ8,7). With the aid of numeric calculation of Mathematica 8.0, we obtain the following results.

Lemma 2 For 0 < ε ≪ 1, Melnikov functions M(Γ1,6), M(Γ6,1), M(Γ3,4) and M(Γ4,3) respectively have the
following forms

M(Γ1,6)
.
= −0.04316a1 + 3.8659a2 + 7.98226a3 + 1.99840a4 + 5.18956a6 + 1.72086a7;

M(Γ6,1)
.
= −0.76515a1 − 13.7964a2 − 56.3786a3 − 32.8209a4 − 12.8951a6 − 1.72086a7;

M(Γ3,4)
.
= −1.22092a1 − 20.2829a2 − 92.36317a3 + 49.0403a4 + 16.9500a6 + 1.72086a7;

M(Γ4,3)
.
= −0.08185a1 + 3.8703a2 + 7.30355a3 + 0.16772a4 − 4.64803a6 − 1.720863a7.

Proof. By using Mathematica 8.0, we obtain the following functions

Γ1,6 : y = y16(x), x2 ≤ x ≤ x1; x = x16(y), −y1 ≤ y ≤ y1;

Γ4,3 : y = y43(x), x3 ≤ x ≤ x4; x = x43(y), −y2 ≤ y ≤ y2;

Γ6,1 : y = y60(x), x1 ≤ x ≤ x∗
1; y = y01(x), x

∗
1 ≤ x ≤ x∗

2; x = x61(y), −y1 ≤ y ≤ y1;

Γ3,4 : y = y30(x), x
∗
3 ≤ x ≤ x3; y = y04(x), x

∗
4 ≤ x ≤ x∗

3; x = x34(y), −y2 ≤ y ≤ y2.

All the above functions are determined by the equation H(x, y) = h3, where x1 = xS1 , x2
.
= 1.35480, x3

.
= −xS3 , x4

.
=

−1.23340, x∗
1
.
= 1.46390, x∗

2
.
= 2.21126, x∗

3
.
= −1.34914, x∗

4
.
= −2.372014, y1 = yS1 , y2 = yS3 .

From (6), Melnikov function of the saddle connection Γ1,6 is calculated as follows:∫
Γ1,6

Q5(x, y)dx =

∫ x2

x1

Q5(x, y16(x))dx+

∫ x1

x2

Q5(x,−y16(x))dx

= a1k1,1 + a2k2,1 + a3k3,1 + a4k4,1 + a6k6,1 + a7k7,1;∫
Γ1,6

P5(x, y)dy =

∫ −y1

y1

P5(x16(y), y)dy

= a1k1,2 + a2k2,2 + a3k3,2 + a4k4,2 + a6k6,2 + a7k7,2.

Melnikov function of the saddle connection Γ6,1 is calculated as follows:

∫
Γ6,1

Q5(x, y)dx =

∫ x∗
1

x1

Q5(x, y60(x))dx+

∫ x2∗

x∗
1

Q5(x, y01(x))dx+∫ x1∗

x∗
2

Q5(x,−y01(x))dx+ intx1

x∗
1
Q5(x,−y60(x))dx

= a1k1,3 + a2k2,3 + a3k3,3 + a4k4,3 + a6k6,3 + a7k7,3;∫
Γ6,1

P5(x, y)dy =

∫ y1

−y1

P5(x61(y), y)dy

= a1k1,4 + a2k2,4 + a3k3,4 + a4k4,4 + a6k6,4 + a7k7,4.

Melnikov function of the saddle connection Γ3,4 is calculated as follows:
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∫
Γ3,4

Q5(x, y)dx =

∫ x∗
3

x3

Q5(x, y30(x))dx+

∫ x∗
4

x∗
3

Q5(x, y04(x))dx+∫ x∗
3

x∗
4

Q5(x,−y04(x))dx+ intx3

x∗
3
Q5(x,−y30(x))dx

= a1k1,5 + a2k2,5 + a3k3,5 + a4k4,5 + a6k6,5 + a7k7,5;∫
Γ3,4

P5(x, y)dy =

∫ −y2

y2

P5(x34(y), y)dy

= a1k1,6 + a2k2,6 + a3k3,6 + a4k4,6 + a6k6,6 + a7k7,6.

Melnikov function of the saddle connection Γ4,3 is calculated as follows:

∫
Γ4,3

Q5(x, y)dx =

∫ x4

x3

Q5(x, y43(x))dx+

∫ x3

x4

Q5(x,−y43(x))dx

= a1k1,7 + a2k2,7 + a3k3,7 + a4k4,7 + a6k6,7 + a7k7,7;∫
Γ4,3

P5(x, y)dy =

∫ y2

−y2

P5(x43(y), y)dy

= a1k1,8 + a2k2,8 + a3k3,8 + a4k4,8 + a6k6,8 + a7k7,8.

After a lot of numerical calculations, we obtain the following results by using Mathematica 8.0:

k1,1
.
= −0.04316137, k2,1

.
= −0.09482117, k3,1

.
= −0.2095090, k4,1

.
= −0.39051156,

k6,1
.
= 0.26267075, k7,1

.
= 0.562356668;

k1,2
.
= 0, k2,2

.
= −3.9608195, k3,2

.
= −8.19177, k4,2

.
= −2.38891, k6,2

.
= −4.9268956,

k7,2
.
= −1.158506660;

k1,3
.
= −0.76515175, k2,3

.
= −2.54847278, k3,3

.
= −8.78324015, k4,3

.
= −15.0207547,

k6,3
.
= 9.0094163, k7,3

.
= 31.1831989;

k1,4
.
= 0, k2,4

.
= 11.247930, k3,4

.
= 47.595420, k4,4

.
= 17.800185, k6,4

.
= 21.9046152,

k7,4
.
= 32.9040622;

k1,5
.
= −1.22092592, k2,5

.
= −4.31925507, k3,5

.
= −16.0690833, k4,5

.
= 24.0859745,

k6,5
.
= −15.546579, k7,5

.
= 50.3377220;

k1,6
.
= 0, k2,6

.
= 15.963738, k3,6

.
= 76.29409, k4,6

.
= −24.954327, k6,6

.
= −32.496619,

k7,6
.
= 48.6168589;

k1,7
.
= −0.08185760, k2,7

.
= −0.16738669, k3,7

.
= −0.34742379, k4,7

.
= 0.51804027,

k6,7
.
= −0.4296418, k7,7

.
= 0.569370864;

k1,8
.
= 0, k2,8

.
= −4.0377181, k3,8

.
= −7.6509821, k4,8

.
= 0.350312, k6,8

.
= 4.218390,

k7,8
.
= 2.29023383.

From above numeric results and equation (6), the lemma is proved.

Lemma 3 For 0 < ε ≪ 1, Melnikov functions M(Γ7,8), M(Γ8,7) respectively have the following forms

M(Γ7,8)
.
= 0.348711099a1 + 0.20254578a2 + 0.06900199a3 + 0.07863389a4 + 0.01965847a6;

M(Γ8,7)
.
= −0.147538383a1 − 0.02527178a2 − 0.00294147a3 + 0.00449010a4 + 0.00112252a6.
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Proof. By using Mathematica 8.0, we obtain the following functions

Γ7,8 : y = y70(x), x5 ≤ x ≤ x6; y = y08(x), x6 ≤ x ≤ x7;

x = x70(y), y3 ≤ y ≤ y4; x = x08(y), y4 ≤ x ≤ y5;

Γ8,7 : y = y87(x), x5 ≤ x ≤ x7; x = x87(y), y3 ≤ y ≤ y5.

All the above functions are determined by the equation H(x, y) = h2, where x5 = −0.4, x6
.
= −0.481108, x7 =

0.2, y3 = 0, y4
.
= 0.59688, y5

.
= yS8 .

From (6), Melnikov function of the saddle connection Γ7,8 is calculated as follows:∫
Γ7,8

Q5(x, y)dx =

∫ x6

x5

Q5(x, y70(x))dx+

∫ x7

x6

Q5(x, y08(x))dx

= a1k1,9 + a2k2,9 + a3k3,9 + a4k4,9 + a6k6,9 + a7k7,9 ++b4k8,9 + b6k9,9;∫
Γ7,8

P5(x, y)dy =

∫ y4

y3

P5(x70(y), y)dy +

∫ y5

y4

P5(x08(y), y)dy

= a1k1,10 + a2k2,10 + a3k3,10 + a4k4,10 + a6k6,10 + a7k7,10 + b4k8,10 + b6k9,10.

Melnikov function of the saddle connection Γ8,7 is calculated as follows:∫
Γ8,7

Q5(x, y)dx =

∫ x5

x7

Q5(x, y87(x))dx

= a1k1,11 + a2k2,11 + a3k3,11 + a4k4,11 + a6k6,11 + a7k7,11 + b4k8,11 + b6k9,11;∫
Γ8,7

P5(x, y)dy =

∫ y3

y5

P5(x87(y), y)dy

= a1k1,12 + a2k2,12 + a3k3,12 + a4k4,12 + a6k6,12 + a7k7,12 + b4k8,12 + b6k9,12.

After a lot of numerical calculations, we obtain the following results by using Mathematica 8.0:

k1,9
.
= 0.348711, k2,9

.
= 0.12041, k3,9

.
= 0.043109, k4,9

.
= 0.03843, k6,9

.
= 0.041111

k7,9
.
= 0.0077271, k8,9

.
= 0.001536, k9,9

.
= −0.0541830;

k1,10
.
= 0, k2,10

.
= −0.08213, k3,10

.
= −0.02589, k4,10

.
= −0.040203, k6,10

.
= 0.02145

k7,10
.
= 0.0077271, k8,10

.
= 0.001536, k9,10

.
= −0.0541830;

k1,11
.
= −0.1475, k2,11

.
= −0.0161, k3,11

.
= −0.0018, k4,11

.
= 0.0031, k6,11

.
= −0.0004

k7,11
.
= 0.0003180, k8,11

.
= −0.001536, k9,11

.
= 0.0018087;

k1,12
.
= 0 , k2,12

.
= 0.00915, k3,12

.
= 0.001111, k4,12

.
= −0.001358, k6,12

.
= −0.001605

k7,12
.
= 0.0003180, k8,12

.
= −0.001536, k9,12

.
= 0.0018087.

From above numeric results and equation (6), the lemma is proved.

Next, from [12], we give the existence conditions of double homoclinic loops and the small homoclinic loops of
system (2).

Lemma 4 As 0 < ε ≪ 1, there exist functions

d(ε,Γ6,1,Γ1,6) = εN1(M(Γ6,1) +M(Γ1,6)) +O(ε2), N1 > 0

d(ε,Γ3,4,Γ4,3) = εN2(M(Γ3,4) +M(Γ4,3)) +O(ε2), N2 > 0

d(ε,Γ7,8,Γ8,7) = εN3(M(Γ7,8) +M(Γ8,7)) +O(ε2), N3 > 0

such that
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(i) when d(ε,Γ6,1,Γ1,6) = 0, then system (2) has a homoclinic loop denoted by Γ6,1(S1(ε)) (resp., Γ6,1(S6(ε))) near
Γ6,1 ∪ Γ1,6, which passes through the saddle point S1(ε) (resp., S6(ε)) if d(ε,Γ6,1) < 0(resp., d(ε,Γ6,1) > 0);

(ii) when d(ε,Γ3,4,Γ4,3) = 0, then system (2) has a homoclinic loop denoted by Γ3,4(S3(ε)) (resp., Γ3,4(S4(ε)))
near Γ3,4 ∪ Γ4,3, which passes through the saddle point S3(ε)(resp., S4(ε)) if d(ε,Γ3,4) > 0(resp., d(ε,Γ3,4) < 0);

(iii) when d(ε,Γ7,8,Γ8,7) = 0, then system (2) has a homoclinic loop denoted by Γ7,8(S7(ε)) (resp., Γ7,8(S8(ε)))
near Γ7,8 ∪ Γ8,7, which passes through the saddle point S7(ε)(resp., S8(ε)) if d(ε,Γ7,8) < 0(resp., d(ε,Γ7,8) > 0).

From Lemma 4, we got the following result.

Lemma 5 There exist functions φ1, φ2, φ3, ϕ1

φ1(a2, a3, a4, a6, ε)
.
= −12.2853439a2 − 59.873330a3 − 38.131921a4 − 9.5329803a6 +O(ε);

φ2(a3, a4, a6, ε)
.
= −17.318557a3 + 242.653402a4 + 60.663349a6 +O(ε);

φ3(a4, a6, ε)
.
= 20.3320277a4 + 5.083007a6 +O(ε);

ϕ1(a3, a4, a6)
.
= 38.10311a3 − 622.0189a4 − 158.23007a6;

such that the following conclusions hold.
(i) If a1 = φ1, a2 = φ2, a7 > ϕ1, then the system (2) has three double homoclinic loops Γ1,2(S1(ε))∪ Γ6,1(S1(ε)),

Γ2,3(S3(ε)) ∪ Γ3,4(S3(ε)), Γ4,5(S5(ε)) ∪ Γ5,6(S5(ε)), where Γi,j(Si(ε)) is the homoclinic loop passing through saddle
point Si(ε) and tending to Γi,j ∪ Γj,i, as ε → 0, i = 1, 3, 5;

(ii) Assume the condition (1) is hold, further if a3 = φ3, then the system (2) has three more small homoclinic loops
Γ7,8(S7(ε)), Γ8,9(S8(ε)), Γ9,7(S9(ε)), where Γi,j(Si(ε)) is the homoclinic loop passing through saddle point Si(ε) and
tending to Γi,j ∪ Γj,i, as ε → 0, i = 7, 8, 9.

Proof. From Lemma 4, we can study the conditions that the system (2) have three double homoclinic loops and
three small homoclinic loops. Let d(ε,Γ6,1,Γ1,6) = d(ε,Γ3,4,Γ4,3) = 0 and d(ε,Γ7,8,Γ8,7) = 0. Then from the implicit
function theorem, we know that there exist functions φ1, φ2, to let the following equation hold

d(ε,Γ6,1,Γ1,6) = d(ε,Γ3,4,Γ4,3) = 0 ⇔ a1 = φ1, a2 = φ2

When equations a1 = φ1, a2 = φ2 hold, we have

M(Γ6,1)
.
= 65.57024a3 − 1070.4094a4 − 272.29232a6 − 1.7208633a7,

M(Γ3,4)
.
= 72.24030a3 − 1186.4623a4 − 291.9256a6 + 1.7208633a7.

Let M(Γ6,1) = 0, we get a7 = ϕ1(a3, a4, a6), where ϕ1 is given in (7). Therefore, if a7 > ϕ1, then d(ε,Γ6,1) <
0, d(ε,Γ1,6) > 0, and if a7 > ϕ1, we also get d(ε,Γ3,4) > 0.

Hence, from Z3-equivariance of system (2) and Lemma 4, we prove the first part of the lemma.
From the implicit function theorem, we can also know that there exist function φ3 to let the following equation hold

d(ε,Γ7,8,Γ8,7) = 0 ⇔ a3 = φ3

Then in the same way, we prove that the second part of the lemma is true.

In the above context, we have already got the existence conditions of double homoclinic loops and the small homoclinic
loops of system (2). Next, the stabilities of the double homoclinic loops and the small homoclinic loops of system (2)
need to be studied. Denote the divergence quantity of equilibrium point P of system (2) by div(P ) = (∂P5

∂x + ∂Q5

∂y )(P ).
Then we will give the criteria to determine the stabilities of the double homoclinic loops and the small homoclinic loops
in the following lemma.

Lemma 6 Suppose that the parameters of system (2) satisfy the following conditions a1 = φ1, a2 = φ2, a3 = φ3

and a7 > ϕ1. Then we have
(i) if a4 − φ4 < 0(resp., a4 − φ4 > 0), then the double homoclinic loop Γ1,2(S1(ε)) ∪ Γ6,1(S1(ε)) of system (2) is

inner and outer stable(unstable), where φ4 is given in (7).
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(ii) if a4 = φ4 and div(S2(ε)) < 0(resp., div(S2(ε)) > 0), then the double homoclinic loop Γ1,2(S1(ε)) ∪
Γ6,1(S1(ε)) of system (2) is inner and outer stable(unstable).

(iii) if div(S7(ε)) < 0(resp., div(S7(ε)) > 0), then the small homoclinic loop Γ7,8(S7(ε)) of system (2) is inner
and outer stable(unstable).

Proof. By direct calculation, we have the following result:

div(S1(ε))
.
= ε(a1 + 9.854a2 + 36.419a3 + 5.424a4 + 1.356a6 − 30.457b4 + 7.614b6) +O(ε2).

From [13, 14, 17], we know that the stabilities of the double homoclinic loop Γ1,2(S1(ε))∪Γ6,1(S1(ε)) and the small
homoclinic loop Γ7,8(S7(ε)) are determined by the sign of divergence quantities of the saddle point S1(ε) and S7(ε)
respectively, so it easy to prove the first and last part of the lemma is true.

Let div(S1(ε)) = 0, then we get a4 = φ4(where φ4 is given in (7)). From [13, 14, 17], we also know if a4 = φ4, the
double homoclinic loop Γ1,2(S1(ε))∪Γ6,1(S1(ε)) of system (2) is degenerated, and its stability is determined by the sign
of the integrals of the following divergence quantities

σ1 = ε

∮
L1,2(S1(ε))

(
∂P5

∂x
+

∂Q5

∂y
)dt;

σ2 = ε

∮
L6,1(S1(ε))

(
∂P5

∂x
+

∂Q5

∂y
)dt.

From [15], we can know that σ1, σ2 and div(S2(ε)) have the same sign as div(S2(ε)) ̸= 0. So from [13–15, 17], we
prove that the second part of the lemma is true.

From the above analysis, the proof is completed.

We denote the Melnikov function of the close orbit Γ : H(x, y) = h by M(Γ) =
∮
Γ
Q5(x, y)dx − P5(x, y)dy.

The equation H(x, y) = −0.09 determines the close orbits Γs, Γm and Γl, where Γs only surrounds the origin O, Γm

surrounds O, Ai, Si( i = 7, 8, 9) and Γl surrounds all the singular points of the unperturbed system (5). As 0 < ε ≪ 1,
we study the breaking way of the close orbits Γs, Γm and Γl. From [16], we know that the breaking ways of the close
orbits Γs, Γm and Γl are closely related with the sign of M(Γs), M(Γm) and M(Γl). So we compute the Melnikov
functions of these three close orbits in the following lemma.

Lemma 7 For ε > 0 and small, then Melnikov function M(Γs), M(Γm) and M(Γl) respectively have the following
expressions

M(Γs)
.
= −0.2386675a1 − 0.0365510a2 − 0.0028328a3 + 0.0028260a4 + 0.0007194a6;

M(Γm)
.
= 1.0469147a1 + 0.7281667a2 + 0.2627759a3 + 0.2377991a4 + 0.05944979a6;

M(Γl)
.
= −14.105015a1 − 130.05528a2 − 615.35708a3 + 41.974227a4 + 10.493556a6.

Proof. By using Mathematica 8.0, we get the following functions:

Γs : y = ys0(x), x8 ≤ x ≤ x9; y = y0s(x), x8 ≤ x ≤ x9;

x = xs0(y), y6 ≤ y ≤ y7; x = x0s(y), y6 ≤ y ≤ y7;

Γm : y = ym0(x), x10 ≤ x ≤ x11; y = y01(x), x10 ≤ x ≤ x12;

y = y12(x), x10 ≤ x ≤ x12; y = y2m(x), x10 ≤ x ≤ x11;

x = xm0(y), y8 ≤ y ≤ y9; x = x01(y), y9 ≤ y ≤ y10;

x = x12(y), y10 ≤ y ≤ y11; x = x2m(y), y8 ≤ y ≤ y11.

All the above functions are determined by the equation H(x, y) = −0.09, where x8 = −0.29753, x9
.
= 0.25786, x10

.
=

−0.50423, x11
.
= −0.48259, x12

.
= 0.6529, y6

.
= 0.27302, y7

.
= −0.27302, y8

.
= −0.61442, y9 = 0.61442, y10 =

0.27929, y11 = −0.27929.
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By direct calculation, Melnikov function of the close orbit Γs is calculated as follows:

M(Γs) =

∫ x9

x8

Q5(x, ys0(x))dx+

∫ x8

x9

Q5(x, y0s(x))dx

−
∫ y7

y6

P5(xs0(y), y)dy −
∫ y6

y7

P5(x0s(y), y)dy.

Melnikov function of the close orbit Γm is calculated as follows:

M(Γm) =

∫ x10

x11

Q5(x, ym0(x))dx+

∫ x12

x10

Q5(x, y01(x))dx

+

∫ x10

x12

Q5(x, y12(x))dx+

∫ x11

x10

Q5(x, y2m(x))dx

−
∫ y9

y8

P5(xm0(y), y)dy −
∫ y10

y9

P5(x01(y), y)dy

−
∫ y11

y10

P5(x12(y), y)dy −
∫ y8

y11

P5(x2m(y), y)dy.

Hence, using numeric computation, we get the epression of M(Γs) and M(Γm). Then using the same way, we can
compute the expression of M(Γl).

It is well known that as 0 < ε ≪ 1, the stabilities of singular points Ai(ε), i = 1, 2, · · · , 9 of system (2) are closely
related with the sign of divergence quantity of the points and the first order focus quantity of the points. Denote V3(P )
the first order focus quantity of the singular point P of system (2). Then from focus quantity formulae given in [16] and
computing, we get the following lemma.

Lemma 8 For ε > 0 and small, we get the following formula

div(A1(ε))
.
= (a1 + 15.92614a2 + 95.11514a3 − 63.55727a4 − 15.88952a6)ε+O(ε2);

div(A6(ε))
.
= (a1 + 14.45662a2 + 78.37387a3 + 54.96742a4 + 13.74183a6)ε+O(ε2);

div(A7(ε))
.
= (a1 + 0.977251a2 + 0.358132a3 + 0.966071a4 + 0.241518a6)ε+O(ε2);

div(S7(ε))
.
= (a1 + 0.64000a2 + 0.153623a3 − 0.5127346a4 − 0.12864a6)ε+O(ε2);

div(S2(ε))
.
= (a1 + 9.854a2 + 36.419a3 + 5.424a4 + 1.356a6 + 30.457b4 − 7.614b6)ε+O(ε2);

V3(A1(ε))
.
= (−34.486a2 − 328.64a3 + 260.48a4 + 65.12a6)ε+O(ε2), when div(A1(ε)) = 0.

4 Main results and their proof
Now by using the method of changing the the stabilities of homoclinic loops and the Poincare-Bendixson Theorem, we
give the main results and their proof of this paper.

Our main results are stated as follows.

Theorem 1 There exist functions

φ1(a2, a3, a4, a6, ε)
.
= −12.2853a2 − 59.8733a3 − 38.1319a4 − 9.5329a6 +O(ε);

φ2(a3, a4, a6, ε)
.
= −17.318557a3 + 242.653402a4 + 60.663349a6 +O(ε);

φ3(a4, a6, ε)
.
= 20.332027a4 + 5.083007a6 +O(ε);

φ4(a6, b4, b6, ε)
.
= −0.25a6 − 0.125076b4 + 0.031269b6 +O(ε);

ϕ1(a3, a4, a6)
.
= 38.10311a3 − 622.0189a4 − 158.23007a6, (7)

IJNS homepage: http://www.nonlinearscience.org.uk/



62 International Journal of NonlinearScience,Vol.25(2018),No.1,pp. 53-64

such that for fixed 4b4 − b6 > 0, a7 > ϕ1 and ε > 0 and small, the following two conclusions hold.
(i) If 0 < a1 − φ1 ≪ a2 − φ2 ≪ φ3 − a3 ≪ φ4 − a4 ≪ ε2, then the system (2) at least has 19 limit cycles with the

configuration given in Figure 2(a).
(ii) If 0 < a1 −φ1 ≪ φ2 − a2 ≪ φ3 − a3 ≪ φ4 − a4 ≪ ε2, then the system (2) at least has 19 limit cycles with the

configuration given in Figure 2(b).

Proof. First, we suppose that the parameters of system (2) satisfy the following conditions: 4b4 − b6 > 0, a1 =
φ1, a2 = φ2, a3 = φ3, a7 > ϕ1 and a4 = φ4. From Lemma 5 and Lemma 6, we can know that for 0 < ε ≪ 1, the system
(2) has 3 double homoclinic loops and 3 small homoclinic loops. The 3 double homoclinic loops are degenerated and their
stabilities are determined by the sign of div(S2(ε)), while the 3 small homoclinic loops’s stabilities are determined by the
sign of div(S7(ε)).

Noticing the above assumptions and Lemma 8, we know div(S2(ε)) > 0, div(S7(ε)) < 0. That means the double
homoclinic loop Γ1,2(S1(ε))∪Γ6,1(S1(ε)) is inner and outer unstable and the small homoclinic loop Γ7,8(S7(ε)) is inner
and outer stable. From Lemma 8, we also know div(A1(ε)) < 0, div(A6(ε)) < 0 and div(A7(ε)) > 0, it mean that
A1(ε) and A6(ε) are stable, and A7(ε) is unstable. So by applying Poincaré Bendixson theorem, we are not certain
that system (2) has any limit cycle surrounding Ai(ε), i = 1, 2, · · · , 9. From Lemma 2 and Lemma 7, we also get
M(Γ1,6) +M(Γ4,3) > 0 and M(Γm) < 0. By applying Poincaré Bendixson theorem again, we get that system (2) has
one limit cycles surrounding Si(ε), Ai(ε), O, i = 7, 8, · · · , 9. From the above analysis, we conclude that system (2) only
has one limit cycle under the above assumptions.

In the following, by using the disturbing skill, we prove that system (2) has 18 more limit cycles. In first step, fix
the value of 4b4 − b6 > 0, slightly change the value of a4 to satisfy that 0 < φ4 − a4 ≪ ε2. At the same time,
let a1 = φ1, a2 = φ2, a3 = φ3 and a7 > ϕ1. So the 3 double homoclinic loops of system (2) still existing but
div(S1(ε)) < 0. Hence the double homoclinic loop Γ1,2(S1(ε)) ∪ Γ6,1(S1(ε)) have changed from a unstable one to the
stable one. By applying Poincaré Bendixson theorem, we get 3 limit cycles near Γ1,2(S1(ε)) ∪ Γ6,1(S1(ε)).

In second step, fix the value of a4 and continue to let a1 = φ1, a2 = φ2, a7 > ϕ1 and slightly change a3 to satisfy
0 < φ3 − a3 ≪ φ4 − a4. Then the small homoclinic loop Γ7,8(S7(ε)) is broken, and a stable limit cycle appears.

The last step, fix the value of a4, a3, and keep a1 = φ1, a7 > ϕ1 change a2 slightly to satisfy that |a2−φ2| ≪ φ3−a3.
Then there are two cases(see [13] more details):

Case i. 0 < a1 − φ1 ≪ a2 − φ2. Then there are 2 limit cycles;
Case ii. 0 < a1 − φ1 ≪ φ2 − a2. Then there are 2 limit cycles.
Noticing the fact that system (2) is Z3-equivariant, we can conclude that we get 18 more limit cycles by using disturb-

ing skill. From the above analysis, we prove the system (2) totally at least has 19 limit cycles whose configurations are
given in Figure 2.

The proof is completed.

Theorem 2 There exist functions φ1, φ2, ϕ1 which are given in (7) and

φ5(a4, a6, b4, b6, ε)
.
= 33.39732a4 + 8.34933a6 + 1.63416b4 − 0.40853b6 +O(ε);

φ6(a6, b4, b6, ε)
.
= −0.25a6 − 0.30905b4 + 0.07726b6 +O(ε), (8)

such that for fixed 4b4 − b6 > 0 , a7 > ϕ1 and ε > 0 and small, the following two conclusions hold.
(i) If 0 < a1 − φ1 ≪ a2 − φ2 ≪ φ5 − a3 ≪ a4 − φ6 ≪ ε2, then the system (2) at least has 23 limit cycles with the

configuration given in Figure 3(a).
(ii) If 0 < a1 − φ1 ≪ φ2 − a2 ≪ φ5 − a3 ≪ a4 − φ6 ≪ ε2, then the system (2) at least has 23 limit cycles with the

configuration given in Figure 3(b).

Proof. First, we suppose that the parameters of system (2) satisfy the following conditions: 4b4 − b6 > 0, a1 =
φ1, a2 = φ2, a7 > ϕ1. It mean that the system (2) only has 3 double homoclinic loops. Let div(S1(ε)) = div(A1(ε)) =
0, then we get a3 = φ5(a4, a6, b4, b6, ε), a4 = φ6(a6, b4, b6, ε), where φ5, φ6 are given in (8). From Lemma 6, we know
the system (2) has 3 degenerated double homoclinic loops and their stabilities are determined by the sign of div(S2(ε)).

Suppose all the above assumptions are hold, from Lemma 8, we know div(S2(ε)) > 0, it mean that the double
homoclinic loop Γ1,2(S1(ε))∪ Γ6,1(S1(ε)) is inner and outer unstable. From lemma 8, we also can have V3(A1(ε)) > 0,
it mean that A1(ε) is a unstable fine focus. So by applying Poincaré Bendixson theorem and noticing the Z3-equivariance
of system (2), we get that system (2) has 3 limit cycles repectively surrounding Ai(ε), i = 1, 3, 5. Under the assumptions,
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(a) case 1 (b) case 2

Figure 2: The two configurations of 19 limit cycles in system (2)

(a) case 1 (b) case 2

Figure 3: The two configurations of 23 limit cycles in system (2)

we also get M(Γl) > 0 and M(Γ6,1) +M(Γ3,4) < 0, M(Γ1,6) +M(Γ4,3) > 0 and M(Γm) < 0. By applying Poincaré
Bendixson theorem again, we get that system (2) has two limit cycles, the first one of them is surrounding all the singular
points, the second one is surrounding Si(ε), Ai(ε), O, i = 7, 8, · · · , 9. From the above analysis, we conclude that system
(2) has 5 limit cycles under the above given assumptions.

Next, by using same disturbing skill just as the one given in the proof of theorem 1, we can prove that system (2) has
3 more limit cycles which respectively surround Ai(ε), i = 1, 3, 5 and 15 more limit cycles near the double homoclinic
loops of system (2) with two different configurations. From the above analysis, we prove that the system (2) totally at
least has 23 limit cycles whose configurations are given in Figure 3.

The proof is completed.

Remark 2 The configurations of these limit cycles are new and different from the configurations obtained by Zhao
liqin [5], where the unperturbed systems is a Z6 equivariant quintic Hamiltonian system.

5 Conclusion

In this paper, the qualitative method of differential equation is used to study the number and distribution of limit cycles of
a perturbed quintic Hamiltonian system. The existence and stability theory of heteroclinic loop and homoclinic loop are
applied to study the heteroclinic loop and homoclinic loop bifurcation of such system under Z3-equivariant quintic per-
turbation. By using the method of changing the the stabilities of homoclinic loops and the Poincare-Bendixson Theorem,
we find the perturbed system has at least 23 limit cycles with two different configurations.
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