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Abstract: This paper explores some elementary quadratic chaotic maps with a single non-hyperbolic fixed
point by performing a systematic computer search. The existence of the non-hyperbolic fixed point in these
maps is investigated, and several examples are illustrated by using various numerical methods, such as the
phase-basin portraits, the Lyapunov exponents, and the maximum of the local Lyapunov dimensions. For
these two-dimensional maps, there is no repelling fixed point, so the Marotto’s theorem is invalid. Bifurca-
tion analysis is carried out to show the occurrence of chaotic attractors with a single non-hyperbolic fixed
point.
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1 Introduction
According to the Leonov-Kuznetsov classification for attractors [1–5] from a computational point of view, the attractors
are divided into two categories, i.e. hidden attractors and self-excited attractors. The attractors are hidden if their basins of
attraction do not intersect with small neighborhoods of equilibria; Otherwise, the attractors are self-excited attractors[1–5].
The well-known chaotic attractors generated from Lorenz system [6], Rössler system [7], chaotic flows [8], and Chua’s
circuit [9] are self-excited attractors. Self-excited attractors can be localized by employing usual numerical methods.
However, there is no good way to localize the hidden attractors. So hidden attractors have received considerable attention
from the research community, and they have been found in many dynamical systems, such as the Chua system [1–3],
the drilling system [4], and the automatic control systems with piecewise-linear non-linearity [5]. Very recently, hidden
chaotic attractors have been explored in continuous dynamical systems with different structure of equilibria [10–25].
However, there are very few results on hidden attractors in discrete-time maps. In [26], hidden stable periodic solutions
were shown for three second-order counterexamples to the discrete-time Kalman conjecture. In [27], hidden attractors in
an one-dimensional map were studied by extending the Logistic map. In [28, 29], a schematic method was proposed to
explore the hidden chaotic attractors in a class of two-dimensional and three-dimensional maps. Until now, the research
work on hidden attractors in discrete-time maps is still raw, and there are many unexplored openings [30, 31].

For continuous dynamical systems, the proof of existence of chaos has been studied extensively in the literature
[32, 33]. The commonly used analytic criteria for proving chaos in autonomous systems are the Smale horseshoe and
the Shilnikov condition [32, 33]. According to the Shilnikov condition, chaos can be classified into four types: homo-
clinic chaos, heteroclinic chaos, a combination of homoclinic and heteroclinic chaos, and chaos without homoclinic or
heteroclinic orbits [34]. However, in some special cases of strange attractors, the Shilnikov condition does not hold. For
example, Wei et al. [34] studied a class of jerk equations with quadratic nonlinearities which can generate a catalog of
nine elementary dissipative chaotic flows with the unusual feature of having a single non-hyperbolic equilibrium. For
such unusual systems, the Shilnikov method cannot be used to verify chaos as they could have neither homoclinic nor
heteroclinic orbits.

On the other hand, the proof of existence of chaos in discrete-time maps has also received great attention from re-
searchers, e.g. [35–43]. In [35], Li and Yorke introduced the first mathematical definition of chaos and established a
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very simple criterion for one-dimensional discrete dynamical systems, namely, “period three implies chaos” for brevity.
Later on, Marotto [36] extended the Li-Yorke’s theorem of chaos from one-dimension to multi-dimension by introducing
the notion of snapback repeller, and Li and Chen [37, 38] proposed an improved version of the Marotto’s theorem. In
[39], Marotto redefined the snapback repeller for validating his theorem due to a technical flaw in the original derivation.
Marotto’s theorem is essential in analytic theory of chaos and effective for identifying the chaotic regime of dynamical
systems. In [40–42], several numerical methods for finding the snapback repellers were proposed based on the Marotto’s
theorem. However, there must exist a fixed point called a repelling fixed point which at least satisfies that all eigenvalues
of the Jacobian matrix must exceed one in magnitude (quoted from the definition in [39]). Some other numerical meth-
ods for proofing onset of chaos (e.g. the computed-assist proof of chaos [43–45]) in maps were developed. In [44], Li
and Yang proposed an efficient method for finding horseshoes in dynamical systems by using several simple results on
topological horseshoes, but the use of the method may depend on user’s trials and experiences.

This paper will explore some elementary quadratic chaotic maps with a single non-hyperbolic fixed point via per-
forming an exhaustive computer search [46, 47]. Typical attractors will be presented in the phase-basin portrait and
numerically analyzed by the Lyapunov exponents and the Kaplan-Yorke dimension. Our exploration will show that there
is no repelling fixed point in these maps, so the Marotto’s theorem is invalid. Bifurcation analysis will be carried out for
considering the occurrence of chaotic attractor with a single non-hyperbolic fixed point. The findings in this paper will be
useful for researchers to understand the dynamical mechanism of discrete-time maps. The rest of this paper is organized
as follows. In Section 2, the mathematical model of a class of two-dimensional maps is introduced, and the existence of
non-hyperbolic fixed points is studied. The chaotic attractors with a single non-hyperbolic fixed point are investigated in
Section 3. Finally, some conclusions are drawn in Section 4.

2 System model and non-hyperbolic fixed points
Following the work in [28], we consider a class of two-dimensional maps which can be described by the following
difference equation {

xk+1 = yk
yk+1 = a1xk + a2yk + a3x

2
k + a4y

2
k + a5xkyk + a6

(1)

where a1, a2, a3, a4, a5, a6 are real coefficients to be determined later, x and y are system states.
The fixed point (x∗, y∗) must satisfy the following conditions{

x = y
y = a1x+ a2y + a3x

2 + a4y
2 + a5xy + a6

(2)

Then the problem of finding fixed points can be transformed into the following equation with respect to y

(a3 + a4 + a5)y
2 + (a1 + a2 − 1)y + a6 = 0 (3)

The Jacobian matrix of the map evaluated at the fixed point (x∗, y∗) is

J =
[

0 1
a1 + 2a3x

∗ + a5y
∗ a2 + 2a4y

∗ + a5x
∗

]
(4)

The characteristic equation is
det(λI − J) = λ2 − tr(J)λ+ det(J) = 0 (5)

where det(J) = −(a1 + 2a3x
∗ + a5y

∗) is the determinant of the Jacobian matrix and tr(J) = a2 + 2a4y
∗ + a5x

∗ is the
trace of the Jacobian matrix. According to the theory of matrix, the sum of eigenvalues of the Jacobian matrix is equal
to tr(J) and the product of eigenvalues of the Jacobian matrix is equal to det(J). The eigenvalues λ1, λ2 of J are called
multipliers of the fixed point. Let n−, n0 and n+ be the numbers of multipliers of the fixed point (x∗, y∗) lying inside,
on, and outside the unit circle {λ ∈ C : |λ| = 1}, respectively.

Definition 1 (Definition 2.10 in [48]) A fixed point (x∗, y∗) is called hyperbolic if n0 = 0, that is, if there is no eigenvalue
of the Jacobian matrix evaluated at this fixed point on the unit circle. Otherwise, the fixed point is called non-hyperbolic,
that is, there is at least one eigenvalue of the Jacobian matrix evaluated at the fixed point on the unit circle.

Assume that there exists a fixed point (x∗, y∗) of map (1). This fixed point is stable if the roots λ1, λ2 of the charac-
teristic equation satisfy that |λ1,2| < 1. If a3 + a4 + a5 ̸= 0, ∆ = (a1 + a2 − 1)2 − 4(a3 + a4 + a5)a6 is denoted as the
discriminant of Eq. (3). In the following, the existence of the non-hyperbolic fixed point will be determined.
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2.1 Single non-hyperbolic fixed point I (SNF I)
As shown in [28], if a3 + a4 + a5 ̸= 0 and ∆ = 0, Eq.(3) has a pair of equal roots y1 = y2 = − a1+a2−1

2(a3+a4+a5)
. So the

map (1) has a single fixed point (x∗, y∗), where x∗ = y∗ = − a1+a2−1
2(a3+a4+a5)

. Since tr(J) = det(J) + 1, there is a real root
λ = 1. Thus, according to Definition 1, this fixed point is non-hyperbolic.

2.2 Single non-hyperbolic fixed point II (SNF II)
As shown in [28], if a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, Eq. (3) has a single solution y = − a6

a1+a2−1 , and the map
(1) has a single fixed point (x∗, y∗), where x∗ = y∗ = − a6

a1+a2−1 . This fixed point is non-hyperbolic if at least one of the
eigenvalues λ1, λ2 of the Jacobian matrix J lies on the unit circle. From the stability theory of two-dimensional discrete
systems [49–51], the fixed point (x∗, y∗) is non-hyperbolic if one of the following conditions is satisfied C1 : det(J)− 1 = 0, |tr(J)| < 2,

C2 : tr(J)− det(J)− 1 = 0,
C3 : tr(J) + det(J) + 1 = 0,

which leads to 

C ′
1 : (a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)− 1 = 0,

|a2 − (2a4a6)/(a1 + a2 − 1)− (a5a6)/(a1 + a2 − 1)| < 2,
C ′

2 : a2 − (a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)
−(2a4a6)/(a1 + a2 − 1)− (a5a6)/(a1 + a2 − 1)− 1 = 0,

C ′
3 : a2 + (a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)

−(2a4a6)/(a1 + a2 − 1)− (a5a6)/(a1 + a2 − 1) + 1 = 0.

As shown in [49–51], if the condition C1 is satisfied, the Jacobian matrix J calculated at this fixed point has two
complex eigenvalues with |λ1| = |λ2| = 1; if the condition C2 is satisfied, the Jacobian matrix J evaluated at this fixed
point has a real eigenvalue 1, i.e., λ1 = 1; if the condition C3 is satisfied, the Jacobian matrix J calculated at this fixed
point has a real eigenvalue -1, i.e., λ1 = −1. Thus, according to Definition 1, this fixed point is non-hyperbolic. However,
by using the command “simplify” in the scientific computing software MATLAB, there is a contraction in a3+a4+a5 = 0,
a1 + a2 − 1 ̸= 0 and the condition C2. Therefore, this reveals that the map cannot have this type of fixed point for which
the Jacobian matrix J has a real eigenvalue of 1.

3 Chaotic attractors with a single non-hyperbolic fixed point
In this section, a systematic computer search program [13, 18, 46] was used to explore the chaotic attractors with a single
non-hyperbolic fixed point.

3.1 Chaotic attractors with a single non-hyperbolic fixed point I (SNF I)

Table 1: Examples of the two-dimensional maps with SNF I
Cases Maps FP λi (x0, y0) Les dimL

SNFI1

{
xk+1 = yk
yk+1 = −yk + y2k − 3.5xkyk − 0.4

−0.4
−0.4

1
−1.4

−0.23
−0.16

0.1754
−0.4597

1.3821

SNFI2

{
xk+1 = yk
yk+1 = 1.78xk − 0.07x2

k − 0.32xkyk − 0.39
1
1

1
−1.32

4.11
2.03

0.1631
−0.6311

1.2586

SNFI3

{
xk+1 = yk
yk+1 = −0.89x2

k − 1.6y2k + 2.74xkyk + 1
2
2

1
−1.92

0.36
0.87

0.1939
−0.3050

1.6355

SNFI4

{
xk+1 = yk
yk+1 = 1.46xk − 0.46yk + 0.26x2

k + 0.87xkyk

0
0

1
−1.46

−0.04
0.28

0.3001
−0.4320

1.6953

Four typical examples of the two-dimensional maps are presented in Table 1 at where the fixed points (FP), the
eigenvalues of the Jacobian matrix at the fixed points (λi), the initial values (x0, y0), the Lyapunov exponents (Les),
and the maximum of the local Lyapunov dimensions dimL are given. The Lyapunov exponents and the maximum of the

IJNS homepage: http://www.nonlinearscience.org.uk/



30 International Journal of NonlinearScience,Vol.25(2018),No.1,pp. 27-37

Figure 1: (colour online) Phase-basin portraits of the maps listed in Table 1: (a) SNFI1, (b) SNFI2, (c) SNFI3, and (d)
SNFI4. Chaotic attractors and non-hyperbolic fixed points are denoted by black and red dots, respectively. The basins of
unbound and chaotic attractors are shown in cyan and yellow, respectively.

local Lyapunov dimensions of the chaotic attractors were computed by using the same method given in [52–57]. If the
Lyapunov exponents of the point p0 = (x0, y0) on the chaotic attractors are L1(p0) and L2(p0), i.e., L1(p0) > 0 and
L2(p0) < 0, the local Lyapunov (Kaplan-Yorke) dimension dimLp0 can be given as dimLp0 = 1 − L1(p0)/L2(p0).
In this paper, a grid of points on chaotic attractors were used to find the maximum of the local Lyapunov dimensions,
i.e., dimL = maxp0∈B(dimLp0), where B was the set of points on chaotic attractors with a grid step h = 0.1 of the
phase space. In the reorthogonalization procedure, the time-step and the number of iterations were chosen as 10 and 107,
respectively. Since all the maps in Table 1 satisfy a3+a4+a5 ̸= 0 and ∆ = 0, they all have a single fixed point. Moreover,
one of their eigenvalues of the Jacobian matrix at the fixed points is 1, so these fixed points are all non-hyperbolic. It can
be seen from Table 1 that all the maximal Lyapunov exponents are positive, so all the attractors in Fig. 1 obtained by the
given initial values are chaotic.

The phase-basin portraits for the maps listed in Table 1 are presented in Fig. 1, where the chaotic attractors and the
fixed points are shown by black and red dots, and the basins of unbound and the chaotic attractors are depicted in cyan
and white, respectively. From Fig.1, it can be seen that all the maps listed in Table 1 do not have other attractor except the
chaotic ones.

In order to investigate the occurrence of chaotic attractor with the single non-hyperbolic fixed point, bifurcation anal-
ysis for the map SNFI1 with respect to the branching parameter a6 was carried out. The bifurcation and the Lyapunov
exponents diagrams are shown in Fig. 2, where the stable solutions are denoted by black dots, and the unstable fixed points,
period-2 and period-4 solutions are marked by magenta, blue, and green dashed lines, respectively. It can be seen from
Fig. 2(a) that stable (black dots) and unstable (magenta dashed line) fixed points coexist for a6 ∈ ( 0, 0.05]. At a6 = 0,
there is a period-doubling bifurcation, so the stable fixed point loses stability and a stable period-2 solution emerges. As
a6 decreases, the map undergoes a period-doubling bifurcation at a6 = −0.2123 and the period-2 solution bifurcates into
a stable period-4 solution. When a6 = −0.3531, the stable period-4 solution loses stability again via a period-doubling
bifurcation followed by a period-8 solution. Thereafter the map experiences a period-doubling bifurcation cascade leading
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Figure 2: (colour online) (a) Bifurcation and (b) Lyapnov exponents diagrams of the map SNFI1. Stable solutions are
denoted by black dots, and unstable fixed points, period-2 and period-4 solutions are marked by magenta, blue, and green
dashed lines, respectively. The non-hyperbolic fixed point is shown by a red dot. The largest Lyapunov exponent (Le1)
and the smallest Lyapunov exponent (Le2) are shown in red and blue lines, respectively.

to chaos. For the up branch of the unstable fixed points, our calculations show that the absolute values of their eigenvalues
satisfy |λ1| > 1 and |λ2| < 1 when a6 ∈ (−0.4, 0]. At a6 = −0.4, one of the eigenvalues becomes one, i.e., λ1 > 1
and λ2 = 1, so this unstable fixed point is a non-hyperbolic fixed point. For the down branch of the unstable fixed points,
all the absolute values of their eigenvalues are greater than one, i.e., |λ1,2| > 1 when a6 ∈ (−0.4, 0.05]. Therefore, the
occurrence of the chaotic attractors with a single non-hyperbolic fixed point is validated by this bifurcation analysis.

3.2 Chaotic attractors with a single non-hyperbolic fixed point II (SNF II)

Four typical examples of the two-dimensional maps are presented in Table 2, where the fixed points (FP), the eigenvalues
of the Jacobian matrix calculated at the fixed points (λi), the initial values (x0, y0), the Lyapunov exponents (Les), and
the maximum of the local Lyapunov dimensions dimL are given. The phase-basin portraits of these two-dimensional
maps are shown in Fig. 3. Since all these maps satisfy a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, they all have a single
fixed point. The coefficients of the maps SNFII1 and SNFII2 satisfy the condition C1. The eigenvalues of the Jacobian
matrix at the fixed points of the maps SNFII1 and SNFII2 are complex and their modules are 1. Thus, these fixed points
are all non-hyperbolic. The coefficients of the maps SNFII3 and SNFII4 satisfy the condition C3. One of the eigenvalues
of the Jacobian matrix calculated at the fixed points of the maps SNFII3 and SNFII4 is -1. Thus, these fixed points are
all non-hyperbolic. It can be seen from Table 2 that all the maximal Lyapunov exponents are positive, so all the attractors
shown in Fig. 3 obtained by the given initial values are chaotic.
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Table 2: Examples of the two-dimensional maps with SNF II
Cases Maps FP λi |λi| (x0, y0) Les dimL

SNFII1


xk+1 = yk
yk+1 = −xk + 0.31yk
−0.04x2

k − 0.63y2
k + 0.67xkyk

0
0

0.1550 + 0.9879i
0.1550 − 0.9879i

1
1

−0.47
−2.01

0.1309
−0.7453

1.1756

SNFII2


xk+1 = yk
yk+1 = −xk − 0.55yk
−0.46x2

k + 0.76y2
k − 0.3xkyk

0
0

−0.2750 + 0.9614i
−0.2750 − 0.9614i

1
1

−1.61
0.89

0.1228
−0.5214

1.2357

SNFII3


xk+1 = yk
yk+1 = 0.38xk − 0.62yk
−0.55x2

k + y2
k − 0.45xkyk

0
0

−1
0.38

1
0.38

0.93
−0.85

0.1114
−0.5386

1.2069

SNFII4


xk+1 = yk
yk+1 = −1.19xk − 2.19yk
−0.3x2

k + 0.33y2
k − 0.03xkyk

0
0

−1
−1.19

1
1.19

−1.19
0.81

0.0622
−0.4038

1.1542

Figure 3: (colour online) Phase-basin portraits of the maps listed in Table 2: (a) SNFII1, (b) SNFII2, (c) SNFII3, and (d)
SNFII4. Chaotic attractors, quasi-periodic attractors and non-hyperbolic fixed points are denoted by black, blue and red
dots, respectively. The basins of unbound, quasi-periodic attractors and chaotic attractors are shown in cyan, white and
yellow, respectively. The blow-up windows show the coexisting quasi-periodic attractors near the non-hyperbolic fixed
point (0, 0).

In Fig. 3, the chaotic attractors, the quasi-periodic attractors, and the non-hyperbolic fixed points are denoted by black,
blue, and red dots, and the basins of unbound, the quasi-periodic attractors, and the chaotic attractors are shown in cyan,
white, and yellow, respectively. The blow-up windows show the coexisting attractors near the non-hyperbolic fixed point
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(0, 0). As can be seen from Fig. 3(a)-(c), the basins of chaotic attractors of the maps SNFII1, SNFII2 and SNFII3 are
smaller than the basins of the coexisting quasi-periodic attractors shown in the blow-up windows. The quasi-periodic
attractors of the maps SNFII1 and SNFII2 are small and form circles around the non-hyperbolic fixed point (0, 0). At
this parameter, the map undergoes a Neimark-Sacker bifurcation and these quasi-periodic attractors occur. For the map
SNFII3, the largest Lyapunov exponent of the attractor near the non-hyperbolic fixed point (0, 0) is closely near zero,
so the attractor is quasi-periodic. However, the quasi-periodic attractors of the map SNFII3 are too small to show two
circles. From Fig. 3(d), no coexisting attractor has been observed.

Figure 4: (colour online) (a) Bifurcation and (b) Lyapnov exponents diagrams of the map SNFII1. Stable solutions are
denoted by black dots, unstable fixed points are marked by magenta dashed lines, and the non-hyperbolic fixed point is
shown by a red dot. The largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are shown in red
and blue dots, respectively.

In order to investigate the occurrence of the chaotic attractors with a single non-hyperbolic fixed point, bifurcation
analyses with respect to the parameter a6 for the maps SNFII1 and SNFII3 were carried out. The bifurcation and the
Lyapunov exponents diagrams for the map SNFII1 are shown in Fig. 4, where the stable solutions are denoted by black
dots, the unstable fixed points are marked by magenta dashed lines, and the non-hyperbolic fixed point is shown by a
red dot. As the parameter a6 decreases from 0.1, the map undergoes a Neimark-Sacker bifurcation at a6 = 0 and the
stable fixed point bifurcates into a quasi-periodic attractor. So, at a6 = 0, the fixed point is non-hyperbolic. Furthermore,
there is a coexisting chaotic attractor which is led by a period-doubling bifurcation cascade from other branch of periodic
solutions. As the parameter a6 decreases, the fixed point becomes unstable. The Lyapunov exponents of the map SNFII1
shown in Fig. 4(b) verify this numerical results.

The bifurcation and the Lyapunov exponents diagrams for the map SNFII3 are shown in Fig. 5, where stable solutions
are denoted by black dots, unstable fixed points are marked by magenta dashed lines, and non-hyperbolic fixed point
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Figure 5: (colour online) (a) Bifurcation and (b) Lyapnov exponents diagrams of the map SNFII3. Stable solutions are
denoted by black dots, unstable fixed points are marked by magenta lines, and the non-hyperbolic fixed point is shown
by a red dot. The largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are shown in red and blue
dots, respectively.

is shown by a red dot. As can be seen from the figure, the single fixed point is stable for a6 ∈ (0, 1.1040). As the
parameter a6 increases from 0, the map undergoes a Neimark-Sacker bifurcation at a6 = 1.1040, and the stable fixed
point bifurcates into a quasi-periodic attractor. As the parameter a6 decreases from 1.1040, the map undergoes a period-
doubling bifurcation at a6 = 0, and the stable fixed point bifurcates into a period-2 orbit. Thus, at a6 = 0, the fixed point
is non-hyperbolic. It should be noted that there are two coexisting attractors, a short regime of chaotic and quasi-periodic
attractors. As the parameter a6 decreases further, the stability of this fixed point changes. The Lyapunov exponents of the
map SNFII3 shown in Fig. 5(b) can demonstrate this numerical results.

From the bifurcation analyses of the maps SNFII1 and SNFII3, we can conclude that the single fixed point is non-
hyperbolic when the map undergoes a Neimark-Sacker or a period-doubling bifurcation, and meanwhile, the map has
chaotic attractors.

4 Conclusions

Some elementary quadratic chaotic maps with a single non-hyperbolic fixed point were explored in this paper by per-
forming an exhaustive computer search. Several typical examples of the two-dimensional maps were studied, and their
typical attractors were shown in the phase-basin portraits and numerically analyzed by using the Lyapunov exponents and
the the maximum of the local Lyapunov (Kaplan-Yorke) dimension. Our investigation indicates that there is no repelling
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fixed point, so the Marotto’s theorem is invalid. In order to investigate the occurrence of the chaotic attractor with a single
non-hyperbolic fixed point, bifurcation analyses with respect to the parameter a6 were carried out. The future works of
this research will be to explore the chaotic attractors with a single non-hyperbolic fixed point in high-dimensional maps,
and to propose the method for proving the existence of chaos in the maps with a single non-hyperbolic fixed point.
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