Existence Results for Nonhomogeneous System of Elliptic Equations with Lack of Compactness

G.A. Afrouzi *, M. Mirzapour
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
(Received 19 October 2011, accepted 21 June 2013)

Abstract: We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems, governed by two Pseudo-Laplacian operators

\[
\begin{aligned}
- \Delta_p u + m(x) |u|^{p-2} u & = \lambda (\alpha + 1) h(x) |u|^{\alpha-1} |v|^{\beta+1} + f & \quad & \text{in } \Omega, \\
- \Delta_q v + l(x) |v|^{q-2} v & = \lambda (\beta + 1) h(x) |u|^{\alpha+1} |v|^{\beta-1} + g & \quad & \text{in } \Omega,
\end{aligned}
\]

\[(u, v) \in W^{1,p}_0(\Omega) \times W^{1,q}_0(\Omega), \]

where \(\Omega \) is a smooth bounded domain in \(\mathbb{R}^N \) with \(N \geq 2 \), \(1 < p, q < N \), \(\alpha > -1 \), \(\beta > -1 \), \(\lambda \) is a positive parameter, the functions \(m(x) \) and \(h(x) \) are smooth functions with change sign on \(\Omega \), \((f, g) \in L^p(\Omega) \times L^q(\Omega) \) with \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \). We propose to show that under condition \(\frac{\alpha+1}{p} + \frac{\beta+1}{q} = 1 \), where \(p^* = \frac{Np}{N-p} \) and \(q^* = \frac{Nq}{N-q} \), our result is depending on the local minimization method. Our result is depending on the local minimization method.

Keywords: Quasilinear Elliptic systems; Nehari manifold; Local minimization; Ekeland Variational principle

2000 Mathematics Subject Classifications: 35J60, 35B30, 35B40.

1 Introduction

In this paper we are interested in the problem

\[
\begin{aligned}
- \Delta_p u + m(x) |u|^{p-2} u & = \lambda (\alpha + 1) h(x) |u|^{\alpha-1} |v|^{\beta+1} + f & \quad & \text{in } \Omega, \\
- \Delta_q v + l(x) |v|^{q-2} v & = \lambda (\beta + 1) h(x) |u|^{\alpha+1} |v|^{\beta-1} + g & \quad & \text{in } \Omega,
\end{aligned}
\]

\[(u, v) \in W^{1,p}_0(\Omega) \times W^{1,q}_0(\Omega), \]

where \(\Omega \) is a smooth bounded domain in \(\mathbb{R}^N \) with \(N \geq 2 \), \(1 < p, q < N \), \(\alpha > -1 \), \(\beta > -1 \), \(\lambda \) is a positive parameter, the functions \(m(x) \) and \(h(x) \) are smooth functions with change sign on \(\Omega \), \((f, g) \in L^p(\Omega) \times L^q(\Omega) \) with \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \). We propose to show that under condition \(\frac{\alpha+1}{p} + \frac{\beta+1}{q} = 1 \), where \(p^* = \frac{Np}{N-p} \) and \(q^* = \frac{Nq}{N-q} \), our result is depending on the local minimization method. Our result is depending on the local minimization method.

For \(p \geq 1 \), \(\Delta_p u \) is the p-Laplacian defined by \(\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u) \) and \(W^{1,p}_0(\Omega) \) is the closure of \(C_0^\infty(\Omega) \) equipped with the norm \(\| \nabla u \|_p \), where \(\| \cdot \|_p \) represents the norm of Lebesgue space \(L^p(\Omega) \). Let \(W^{-1,p'}(\Omega) \) be the dual space to \(W^{1,p}_0(\Omega) \) and we will write \(\| f \|_{-1,p'} \) for the norm in \(W^{-1,p'}(\Omega) \). We denote by \(\langle \cdot, \cdot \rangle \) the natural duality paring between \(W^{1,p}_0(\Omega) \) and \(W^{-1,p'}(\Omega) \). For all \(p > 1 \), \(S_p = \inf \{ \| \nabla u \|_p^p; \| u \|_{p'} = 1, u \in W^{1,p}_0(\Omega) \} \) is the best Sobolev constant of immersion \(W^{1,p}_0(\Omega) \hookrightarrow L^p(\Omega) \).

In nonlinear elliptic problems involving critical nonlinearities, one of the major difficulties is to recover the compactness of Palais-Smale sequences of the associated Euler-Lagrange functional. The concentration-compactness principle due to Lions [10] is widely used to overcome these difficulties. In [11], the author considered the system

\[
\begin{aligned}
- \Delta_p u & = |u|^{\alpha-1} u |v|^{\beta+1} + f & \quad & \text{in } \Omega, \\
- \Delta_q v & = |u|^{\alpha+1} u |v|^{\beta-1} + g & \quad & \text{in } \Omega, \\
u & = v = 0 & \quad & \text{on } \partial \Omega,
\end{aligned}
\]

* Corresponding author. E-mail address: afrouzi@umz.ac.ir; mirzapour@stu.umz.ac.ir

Copyright © World Academic Press, World Academic Union

IJNS.2013.08.15/741
where Ω is a regular bounded set of \mathbb{R}^N, $\alpha > -1$, $\beta > -1$, $(f, g) \in W^{-1,p}_0(\Omega) \times W^{-1,q}_0(\Omega)$. He show that under condition $\frac{\alpha + 1}{p} + \frac{\beta + 1}{q} = 1$, (1.1) admits a solution.

Other methods, based on the convergence almost everywhere of the gradients of Palais-Smale sequences, can be also used to recover the compactness.

J. Chabrowski [7] studied the following system
\[
\begin{align*}
-\Delta_p u &= \lambda u|u|^\alpha v^\beta + f \quad \text{in } \Omega, \\
-\Delta_q v &= \lambda v|v|^\beta u^\alpha + g \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]
where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $\lambda \in \mathbb{R}$ with $\lambda \neq 0$. In the case $p = q$, he developed a method that can be used to find norm-estimates of f and g guaranteeing the solvability of system.

K. Adiouchi et al. [1] considered the system
\[
\begin{align*}
-\Delta_p u &= \lambda f(x, u) + u|u|^\alpha v^\beta + f \quad \text{in } \Omega, \\
-\Delta_q v &= \lambda g(x, u) + u|u|^\beta v^\alpha + g \quad \text{in } \Omega,
\end{align*}
\]
in bounded domain with Dirichlet or mixed boundary conditions. The functions f and g are two Caratheodory functions with subcritical conditions on the level corresponding to the energy of Palais-Smale sequences which guarantees their relative compactness.

In [5] S. Benmouloud et al. studied system (1.2) in open subset of \mathbb{R}^N with lack of compactness. They used the method based on preliminary results on the convergence almost everywhere of the gradients of Palais-Smale sequences.

Motivated by paper [5], the object of this article is to study the existence of weak solution of system (1.1). Here, we borrow some ideas from that work.

Let us define $X = W^{1,p}_0(\Omega) \times W^{1,q}_0(\Omega)$ equipped with the norm $\|(u, v)\|_X = \max(\|\nabla u\|_p, \|\nabla v\|_q)$ which gives to X Banach space properties, reflexivity and separability ([11]).

Definition 1 We say that $(u, v) \in X$ is a weak solution of system (1.1) if and only if
\[
\begin{align*}
\int_{\Omega} |\nabla u|^{p-2}\nabla u \cdot \nabla w_1 dx + \int_{\Omega} m(x)|u|^{p-2}w_1 dx &= \lambda(\alpha + 1) \int_{\Omega} h(x)|u|^\alpha v^\beta \Delta w_1 dx + \int_{\Omega} f w_1 dx, \\
\int_{\Omega} |\nabla v|^{q-2}\nabla v \cdot \nabla w_2 dx + \int_{\Omega} l(x)|v|^{q-2}w_2 dx &= \lambda(\beta + 1) \int_{\Omega} h(x)|u|^\beta v^\alpha \Delta w_2 dx + \int_{\Omega} g w_2 dx,
\end{align*}
\]
for all $(w_1, w_2) \in X$.

The associated Euler-Lagrange functional to system (1.1) $J : X \rightarrow \mathbb{R}$ is defined by
\[
J(u, v) = \frac{1}{p} P(u) + \frac{1}{q} Q(v) - \lambda R(u, v) - \langle f, u \rangle - \langle g, v \rangle,
\]
where
\[
P(u) = \|\nabla u\|_p^p + \int_{\Omega} m(x)|u|^p dx, \quad Q(v) = \|\nabla v\|_q^q + \int_{\Omega} l(x)|v|^q dx,
\]
and
\[
R(u, v) = \int_{\Omega} h(x)|u|^\alpha v^\beta + \|\nabla u\|_p^p dx.
\]

It is well known if J is bounded below and J has a minimizer on X, then this minimizer is a critical point of J. However, the Euler function $J(u, v)$, associated with the problem (1.1), is not bounded below on the whole space X, but is bounded on an appropriate subset, and has a minimizer on this set (if it exists) gives rise to solution to (1.1). Clearly, the critical points of J are the weak solutions of problem (1.1).

Consider the Nehari manifold associated to problem (1.1) given by
\[
\Lambda = \{(u, v) \in X \setminus \{(0, 0)\}; \langle J'(u, v), (u, v) \rangle = 0\}
\]

IJNS homepage: http://www.nonlinearscience.org.uk/
We set
\[m_1 = \inf_{(u,v) \in A} J(u,v), \]
and for all \(r > 0 \) and \(t > 0 \)
\[
\begin{align*}
 a(t) &= \frac{1}{t} - \frac{1}{\alpha + \beta + 2}, \\
b(t) &= \frac{t - 1}{(\alpha + \beta + 2)(\alpha + \beta + 1)}, \\
c(t) &= \frac{\alpha + \beta + 2 - t}{\alpha + \beta + 1}, \\
d(r, t) &= \frac{1}{p^r + q^r t^r},
\end{align*}
\]
and
\[
\varepsilon = d(\theta, \gamma) |c(p)| - \frac{\theta^p}{q} \frac{b(p)\min(S_p^+, S_q^+)}{c_0 \lambda} p^p q^q,
\]
where \(c_0 = \max_{x \in \Omega} h(x) \) and \(\theta, \gamma \) are fixed numbers such that
\[
0 < \theta < \frac{pc(p)}{1}, \quad \text{and} \quad 0 < \gamma < \frac{qc(q)}{1}.
\]

2 Main result

Our main result is the following:

Theorem 1 Suppose that \((f, g) \in W^{-1,p'}_0(\Omega) \times W^{-1,q'}_0(\Omega)\), non of the functions \(f \) and \(g \) is identically to zero on \(\Omega \) and

(a) \(\frac{\alpha + 1}{p^*} + \frac{\beta + 1}{q^*} = 1 \), \quad (b) \(\max(p, q) < \alpha + \beta + 2 \), \quad (c) \(\frac{\theta^p}{q} \frac{b(p)\min(S_p^+, S_q^+)}{c_0 \lambda} p^p q^q < \min(\varepsilon_1, \varepsilon_2, 1) \).

Then for any \(\lambda > 0 \) there exists a pair \((u^*, v^*) \in A\) such that \((u^*, v^*)\) is a solution of system (1.1) satisfies the property \(J(u^*, v^*) < 0 \).

Definition 2 We say that the functional \(J \) satisfies the Palais-Smale condition at level \(c \in R \) (in short form \((PS)_c \)) if every sequence \((\{u_m, v_m\}) \subset X\) such that \(J(u_m, v_m) \to c \) and \(J'(u_m, v_m) \to 0 \) in \(X^* \) as \(m \to \infty \) is relatively compact in \(X \).

Lemma 2 Suppose \(\alpha + \beta + 2 > \max(p, q) \). Then, there exists a sequence \((u_m, v_m) \in A\) such that \(\lim_{m \to \infty} J(u_m, v_m) = \inf_{(u,v) \in A} J(u,v) \) and

\[\|J'(u_m, v_m)\|_{X^*} \leq \frac{1}{m}. \]

Proof. We show that \(J \) is bounded below on \(A \). Let \((u, v)\) be an arbitrary element in \(A \). We have

\[J(u, v) = a(p)P(u) + a(q)Q(v) - a(1)\langle f, u \rangle - a(1)\langle g, v \rangle. \]

Using successively the Holder’s inequality and the Young’s inequality on the terms \(\langle f, u \rangle \) and \(\langle g, v \rangle \), we can write

\[
J_{\lambda} \geq a(p)\|\nabla u\|_p^p - \theta^p\|\nabla u\|_p^p + [a(q)\|\nabla u\|_q^q - \theta^q\|\nabla u\|_q^q - \theta^{-p'}[a(1)]\|\nabla u\|_p^p]\theta^{-r} - \gamma^{-q'}[a(1)]\|g\|_{-1,q'} \gamma. \]

Since the real numbers \(\theta \) and \(\gamma \) being arbitrary, a suitable choice of \(\theta \) and \(\gamma \) assure that \(J \) is bounded below on \(A \). The Ekeland Variation principle ensures the existence of such sequence.

We shall show that each minimizing sequence contains a Palais-Smale sequence when \(f, g \) satisfied in condition (c).

For all \((u, v) \in X\) we consider

\[I(u, v) = \langle J'(u, v), (u, v) \rangle = P(u) + Q(v) - \lambda(\alpha + \beta + 2)R(u, v) - \langle f, u \rangle - \langle g, v \rangle. \]

We want to establish that \(J'(u_m, v_m) \to 0 \) in \(X^* \) as \(m \to \infty \). It suffice to show that
Lemma 3 (see [11], Lemma 4.6, Proposition 5.1) Under condition (c), we have
(i) \(\langle P'(u, v), (u, v) \rangle \neq 0 \) for all \((u, v) \in \Lambda\).
(ii) There exists \(\delta \) such that \(|J'(u_m, v_m), (u_m, v_m)| > \delta > 0, \forall n \geq n_0 \) for some \(n_0 \in \mathbb{N} \).

Lemma 4 (see [5]) The critical value of \(J \) on \(\Lambda, m_1 = \inf_{(u, v) \in \Lambda} J(u, v) \), has the following property
\[m_1 < \min \left[-\frac{\alpha + 1}{p'}, \frac{\beta + 1}{q'} \|g\|_{-1, q'}^q \right]. \]

Lemma 5 Let \(c \in \mathbb{R} \). Then each \((PS)_c\)–sequence for \(J \) is bounded.

Proof. Let \(\{(u_m, v_m)\} \) be such sequence, that is
\[J(u_m, v_m) = c + o_m(1), \quad \text{and} \quad J'(u_m, v_m) = o_m \left(\|u_m, v_m\|_X \right). \]
We can write
\[J(u_m, v_m) = \frac{1}{\alpha + \beta + 2} \langle J'(u_m, v_m), (u_m, v_m) \rangle \]
\[= \frac{a(p)\|\nabla u_m\|^p + a(q)\|\nabla v_m\|^q}{\alpha + \beta + 2} \leq \frac{a(p)\|\nabla u_m\|^p + a(q)\|\nabla v_m\|^q}{\alpha + \beta + 2} \]
Using successively the Holder’s inequality and the Young’s inequality on the terms \(\langle f, u_m \rangle \) and \(\langle g, v_m \rangle \), we have
\[\|u_m\|_p \leq c + o_m \left(\|u_m, v_m\| \right). \]
At this stage we can assume, up to a subsequence, that
\[u_m \to u \quad \text{in} \quad W^{1, p}_0(\Omega), \]
\[v_m \to v \quad \text{in} \quad W^{1, q}_0(\Omega), \]
\[u_m \to u \quad \text{a.e. in} \quad \Omega, \]
\[v_m \to v \quad \text{a.e. in} \quad \Omega. \]

Let
\[J_0(u, v) = \frac{1}{p} P(u) + \frac{1}{q} Q(v) - \lambda R(u, v), \]
and
\[\Lambda_0 = \{(u, v) \in X \setminus \{(0, 0)\}; D_1 J_0(u, v) = D_2 J_0(u, v) = 0\}, \]
where \(D_1 J_0 \) (resp. \(D_2 J_0 \)) denotes the Gateaux derivative of \(J_0 \) with respect to its first (resp. second) variable. Set
\[m_0 = \inf_{(u, v) \in \Lambda_0} J_0(u, v). \]

Theorem 6 The functional \(J \) satisfies \((PS)_c\) with
\[c \in (-\infty, m_0 + m_1). \]

Proof. By standard argument, we can show that the pair \((u, v)\) in (2.1) and (2.2) is a critical point of \(J \). Now, we set
\[X_m = u_m - u. \]
\[Y_m = v_m - v. \]

From Brezis-Lieb’s lemma [6], we have

\[
\begin{align*}
P(X_m) &= P(u_m) - P(u) + o_m(1), \\
Q(Y_m) &= Q(v_m) - Q(v) + o_m(1), \\
R(X_m, Y_m) &= R(u_m, v_m) - R(u, v) + o_m(1).
\end{align*}
\]

It follows that

\[
\begin{align*}
P(X_m) - R(X_m, Y_m) &= o_m(1), \\
Q(Y_m) - R(X_m, Y_m) &= o_m(1), \\
J_0(X_m, Y_m) &= c - J(u, v) + o_m(1).
\end{align*}
\]

Let \(P(X_m), Q(Y_m) \) and \(R(X_m, Y_m) \) have the same limit \(l \). We will show that \(l = 0 \). Assume for the sake of contradiction, \(l \neq 0 \). Let \((s_0(u_m, v_m), t_0(u_m, v_m)) \in \mathbb{R}^2\) satisfy the following system

\[
\begin{align*}
\frac{\partial}{\partial s} J_0(s_0 X_m, t_0 Y_m) &= 0, \\
\frac{\partial}{\partial t} J_0(s_0 X_m, t_0 Y_m) &= 0.
\end{align*}
\]

Let \(r = \frac{q(\alpha+1)}{q-(\beta+1)} \), we get \(p < r \). An easy computation shows that

\[
s_0(u_m, v_m) = \left[\frac{P(X_m)Q(Y_m)^{\frac{q-(\beta+1)}{(\alpha+1)(\beta+1)}}}{(\alpha+1)(\beta+1)} \right]^{\frac{1}{q-(\beta+1)}}.
\]

and

\[
t_0(u_m, v_m) = s_0^\frac{q}{r} (u_m, v_m) \left[\frac{\lambda(\beta+1)R(X_m, Y_m)}{Q(Y_m)^{\frac{q}{r}}(\alpha+1)} \right]^{\frac{1}{q-(\beta+1)}}.
\]

It is clear that for suitable choice of \(\lambda \) when \(\alpha, \beta \) are sufficiently small, we have

\[
\lim_{m \to \infty} s_0(u_m, v_m) = 1 = \lim_{m \to \infty} t_0(u_m, v_m)
\]

and the pair \((s_0 X_m, t_0 Y_m) \in A_0\) which together with (2.4), implies that

\[
c - J(u, v) = \lim_{m \to \infty} J_0(X_m, Y_m) = \lim_{m \to \infty} J_0(s_0 X_m, t_0 Y_m) \geq m_0,
\]

and consequently

\[
c \geq m_0 + m_1.
\]

This leads to contradiction with (2.3). \(\blacksquare \)

Acknowledgments

The authors express their sincere gratitude to the referee for reading this paper very carefully and specially for valuable suggestions concerning improvement of the manuscript.

References

IJNS homepage: http://www.nonlinearscience.org.uk/