Majorization for Certain Classes of Analytic Functions Defined by Generalized Fractional Calculus Operators

Pranay Goswami\(^1\) *, Bhavna Shrama\(^2\)

\(^1\)Department of Mathematics, AMITY University Rajasthan, Jaipur-303002, India
\(^2\)Department of Mathematics, Balaji Institute of Engineering and Technology, Jaipur-302022, India

(Received 23 December 2011, accepted 26 April 2013)

Abstract: In this paper, we investigate a majorization problem involving starlike multivalent function of complex order belonging to a certain subclasses of multivalent function defined by generalized fractional calculus operator. Moreover, we point out some new or known consequences of our main result.

Keywords: Analytic functions; Multivalent functions; Starlike functions; Subordination; Fractional calculus operators; Majorization property

2000 MSC: Primary 30C45; Secondary 26A33.

1 Introduction

Let \(f \) and \(g \) be analytic in the open unit disk

\[
\Delta = \{ z : z \in \mathbb{C} , |z| < 1 \}.
\]

We say that \(f \) is majorized by \(g \) in \(\Delta \) (see [1]) and write

\[
f(z) \ll g(z) \quad (z \in \Delta),
\]

if there exists a function \(\varphi \), analytic in \(\Delta \) such that

\[
|\varphi(z)| \leq 1 \quad \text{and} \quad f(z) = \varphi(z)g(z) \quad (z \in \Delta).
\]

It may be noted here that (1.2) is closely related to the concept of quasi-subordination between analytic functions.

For two functions \(f \) and \(g \), analytic in \(\Delta \), we say that the function \(f \) is subordinate to \(g \) in \(\Delta \), and we write

\[
f(z) \prec g(z),
\]

if there exists a Schwarz function \(\omega \), which is analytic in \(\Delta \) with

\[
\omega(0) = 0 \quad \text{and} \quad |\omega(z)| < 1 \quad (z \in \Delta)
\]

such that

\[
f(z) = g(\omega(z)) \quad (z \in \Delta).
\]

Furthermore, if the function \(g \) is univalent in \(\Delta \), then we have the following equivalence,

\[
f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \quad \text{and} \quad f(\Delta) \subset g(\Delta).
\]
Let A_p denote the class of functions of the form
\[f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N} := \{1, 2, 3, \ldots\}), \]
which are analytic in the open unit disk Δ. For simplicity, we write $A_1 := A$.

In the following, we recall the Definition of generalized fractional derivative.

Definition 1.1 (\cite{12}, see also \cite{11,13}). Let $0 \leq \lambda < 1$ and $\mu, \eta \in \mathbb{R}$. Then
\[J_{0,z}^{\lambda,\mu,\eta} f(z) = \frac{d}{dz} \left(\frac{z^{\lambda-\mu}}{\Gamma(1-\lambda)} \int_0^z (z-t)^{-\lambda} \frac{1}{\Gamma(\mu+\eta+1)} \frac{1}{\Gamma(1-\lambda)} f(t) dt \right), \]
where the function is analytic in a simply connected region of the z-plane containing the origin, with the order $f(z) = O(|z|^\varepsilon)(z \to 0)$, and $\varepsilon > \max\{0, \mu - \eta\} - 1$.

It is understood that $(z-t)^{-\lambda}$ denotes the principal value for $0 \leq \arg(z-t) < 2\pi$. The function occurring in the right-hand side of (1.5) is the familiar Gaussian hypergeometric function.

Definition 1.2 (\cite{12}). Under the hypothesis of Definition 1.1, a fractional calculus operator $J_{0,z}^{\lambda+\mu+m,\mu+m,\eta+m}$ is defined by,
\[J_{0,z}^{\lambda+\mu+m,\mu+m,\eta+m} f(z) = \frac{d^m}{dz^m} J_{0,z}^{\lambda,\mu,\eta} f(z) \quad (z \in \Delta; m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \]

We observe that
\[D_z^\lambda f(z) = J_{0,z}^{\lambda,\mu,\eta} f(z)(0 \leq \lambda < 1), \]
and
\[D_z^{\lambda+m} f(z) = J_{0,z}^{\lambda+m,\mu+m,\eta+m} f(z)(0 \leq \lambda < 1; m \in \mathbb{N}_0), \]
where $D_z^{\lambda+m} f(z)$ is the well known fractional derivative operator (see \cite{14} and many others). Furthermore, in terms of Gamma functions Definition 1.1, readily yields

Lemma 1.1. (Srivastava et al. \cite{15}). If $0 \leq \lambda < 1; \mu, \eta \in \mathbb{R}$ and $k > \max\{0, \mu - \eta\} - 1$, then
\[J_{0,z}^{\lambda,\mu,\eta} z^k = \frac{\Gamma(k+1)\Gamma(k+\mu+1)}{\Gamma(k-\eta+1)\Gamma(k+\mu+\eta+1)} z^{k-\mu}. \]

Definition 1.3 A function $f \in A_p$ is said to be in the class of $M_{p,m}^{\lambda,\mu,\eta}[A,B;\gamma]$, of p-valent function of complex order $\gamma \neq 0$ in Δ if and only if
\[1 + \frac{1}{\gamma} \left(\frac{z J_{0,z}^{\lambda+\mu+m,\mu+m,\eta+m} f(z)}{J_{0,z}^{\lambda,\mu,\eta} f(z)} - (\mu - m) \right) < \frac{1 + A z}{1 + B z} \]
\[(z \in \Delta, p \in \mathbb{N}, j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \gamma \in \mathbb{C} \setminus \{0\}, 0 \leq \lambda < 1, \mu < 1 \text{ and } \eta > \max(\lambda, \mu - p - 1)\]

Clearly we have the following relationship.

1. $M_{p,m}^{\lambda,\mu,\eta}[A,B;\gamma] \equiv M_{p,m}^{\lambda,\mu,\eta}[A,B;\gamma]$ where $M_{p,m}^{\lambda,\mu,\eta}[A,B;\gamma]$ represents the class of functions $f \in A_p$ satisfying the condition
\[1 + \frac{1}{\gamma} \left(\frac{z D_z^{\lambda+1} f(z)}{D_z^1 f(z)} - (\mu - m) \right) < \frac{1 + A z}{1 + B z} \]
2. $M_{1,0}^{0,0,\eta}[A,B;\gamma] \equiv S^*\{A,B;\gamma\}$
3. $M_{1,0}^{1,1,\eta}[1,-1;\gamma] \equiv K(\gamma)$
4. $M_{1,0}^{0,0,\eta}[1,-1;\gamma] \equiv S(\gamma)$
5. $M_{1,0}^{0,0,\eta}[1,-1;1-\alpha] \equiv S^*(\alpha)$

IJNS homepage: [http://www.nonlinearscience.org/uk]
The class $S^*[A, B; \gamma]$ is studied by Polatoglu [10], which is a well-known class of starlike function. The classes $S(\gamma)$ and $K(\gamma)$ are classes of starlike and convex of complex order $\gamma \neq 0$ in Δ which were considered by Naser and Aouf [8], and Wiatrowski [16]. The class of starlike functions of order $S^*(\alpha)$ in Δ.

A majorization problem for the class $S(\gamma)$ has recently been investigated by Altinas et al. [1]. Also, majorization problems for the class $S^* = S^*(0)$ have been investigated by MacGregor [7]. Further, majorization problems for different classes have been studied by Goyal and Goswami [5], Goyal at el. [6], Goswami and Aouf [2], Goswami and Wang [3] and Goswami et al. [4]. In the present paper, we investigate a majorization problem for the class $M_{p, m}^\lambda, \mu, \eta [A, B, \gamma]$.

2 Majorization problem for the class $M_{p, m}^\lambda, \mu, \eta [A, B, \gamma]$.

We begin by proving

Theorem 2.1. Let the function $f \in A_p$ and suppose that $g \in M_{p, m}^\lambda, \mu, \eta [A, B, \gamma]$. If $J_{p,m}^\lambda, \mu, \eta, m + m g(z)$ is majorized by $J_{0,m}^\lambda, \mu, \eta, m + m g(z)$ in Δ, then

$$\left| \frac{J_{0,m}^\lambda, \mu, \eta, m + m g(z)}{J_{0,m}^\lambda, \mu, \eta, m + m g(z)} \right| \leq \frac{1 + Aw(z)}{1 + Bw(z)},$$

for $|z| = r_1$, where r_1 is the smallest positive root of the following equation

$$|\gamma A - B(\gamma - p + \mu + m)| r^3 - (|p - \mu - m| + 2B) r^2$$

$$- (|\gamma A - B(\gamma - p + \mu + m)| + 2)r + |p - \mu - m| = 0$$

where $(z \in \Delta, p \in \mathbb{N}, m, j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \gamma \in \mathbb{C} \setminus \{0\}, 0 \leq \lambda < 1, \mu < 1, |p - \mu - m| \geq |\gamma A - B(\gamma - p + \mu + m)|$ and $\eta > \text{max}(\lambda, \mu) - p - 1$.

Proof. Since $g \in M_{p, m}^\lambda, \mu, \eta [A, B, \gamma]$, we have

$$1 + \frac{1}{\gamma} \left(\frac{zJ_{0,m}^\lambda, \mu, \eta, m + m g(z)}{J_{0,m}^\lambda, \mu, \eta, m + m g(z)} - (p - \mu - m) \right) = \frac{1 + Aw(z)}{1 + Bw(z)}.$$ (2.3)

We note that $w(z) = c_1 z + c_2 z^2 + \ldots \in \mathcal{P}$, where \mathcal{P} denotes the well-known class of bounded analytic function in Δ (see [9]) and satisfies the conditions

$$w(0) = 0 \text{ and } |w(z)| \leq |z| \ (z \in \Delta).$$

From (2.3), we get

$$zJ_{0,m}^\lambda, \mu, \eta, m + m g(z) = \frac{w(z)\{\gamma A - B(\gamma - p + \mu + m)\} + (p - \mu - m)}{1 + Bw(z)},$$

which yields

$$\left| \frac{J_{0,m}^\lambda, \mu, \eta, m + m g(z)}{J_{0,m}^\lambda, \mu, \eta, m + m g(z)} \right| \leq \frac{|(1+Bz)|}{|(p-\mu -m)| - |w(z)\{\gamma A - B(\gamma - p + \mu + m)\}|} \left| \frac{J_{0,m}^\lambda, \mu, \eta, m + m g(z)}{J_{0,m}^\lambda, \mu, \eta, m + m g(z)} \right|. $$ (2.5)

Next, since $J_{0,m}^\lambda, \mu, \eta, m + m f(z)$ is majorized by $J_{0,m}^\lambda, \mu, \eta, m + m g(z)$ i.e.

$$J_{0,m}^\lambda, \mu, \eta, m + m f(z) = \phi(z)J_{0,m}^\lambda, \mu, \eta, m + m g(z)$$

Differentiating the above equation with respect to 'z', we get

$$J_{0,m}^\lambda, \mu, \eta, m + m f(z) = \phi'(z)J_{0,m}^\lambda, \mu, \eta, m + m g(z) + \phi(z)J_{0,m}^\lambda, \mu, \eta, m + m g(z).$$ (2.6)

Since $\phi \in \mathcal{P}$ satisfies the inequality (see eg. Nehari [9])

$$|\phi'(z)| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2}, \ (z \in \Delta),$$
by using it in (2.6), we easily get

\[\left| f_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} f(z) \right| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2} \left| J_{0,z}^{\lambda+m,\mu+m,\eta+m} g(z) \right| + |\phi(z)| \left| J_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} g(z) \right|. \]

Using (2.5) in above equation, we obtain

\[\left| f_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} f(z) \right| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2} \left| J_{0,z}^{\lambda+m,\mu+m,\eta+m} g(z) \right| + |\phi(z)| \left| J_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} g(z) \right|. \] (2.7)

Let \(|\phi(z)| = \rho (0 \leq \rho \leq 1)\) and \(|z| = r\), then

\[\left| J_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} f(z) \right| \leq \frac{\psi(r,\rho)}{(1-r^2)(|(p-\mu-m)| - r |(\gamma A - B(\gamma - p + \mu + m))|)} \left| J_{0,z}^{\lambda+m,\mu+m,\eta+m} g(z) \right|. \] (2.8)

where

\[\psi(r,\rho) = -\rho^2 r(1 + Br) + \rho [(1 - r^2) |(p - \mu - m)| - r |(\gamma A - B(\gamma - p + \mu + m))|] + r(1 + Br). \]

Now we have to prove

\[\left| J_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} f(z) \right| \leq \left| J_{0,z}^{\lambda+m+1,\mu+m+1,\eta+m+1} g(z) \right|. \]

To prove it, it is sufficient to show that

\[\psi(\rho) \leq 1, \]

which is equivalent

\[(1 - \rho)(-1 + \rho)r(1 + Br) + (1 - r^2) |(p - \mu - m)| - r |(\gamma A - B(\gamma - p + \mu + m))| \geq 0, \]

this implies

\[u(r,\rho) = [(1 - r^2) |(p - \mu - m)| - r |(\gamma A - B(\gamma - p + \mu + m))|] - (1 + \rho)r(1 + Br) \geq 0. \]

while the function \(u(r,\rho)\) takes its minimum values at \(\rho = 1\), i.e.

\[\min\{u(r,\rho) : \rho \in [0,1]\} = u(r, 1) = v(r), \]

where

\[v(r) = |\gamma A - B(\gamma - p + \mu + m)| r^3 - (|p - \mu - m| + 2B) r^2 \]

\[-(|\gamma A - B(\gamma - p + \mu + m)| + 2) r + |p - \mu - m| \]

It follows that \(v(r) \geq 0\) for all \(r \in [0,r_1]\), where \(r_1\) is the smallest positive root of the equation given by (2.2).

Upon setting \(\lambda = \mu\), we get

\textbf{Corollary 2.1.} Let the function \(f \in A_p\) and suppose that \(g \in M^{\lambda}_A[A, B; \gamma]\). If \(D^{\lambda+m}_{0,z} g(z)\) is majorized by \(D^{\lambda+m}_{0,z} g(z)\) in the unit disk \(\Delta\), then

\[\left| D^{\lambda+m+1}_{0,z} f(z) \right| \leq \left| D^{\lambda+m+1}_{0,z} g(z) \right| \quad \text{for} |z| \leq r_2 \]

where \(r_2\) is the smallest positive root of the following equation,

\[|\gamma A - B(\gamma - p + \lambda + m)| r^3 - (|p - \lambda - m| + 2B) r^2 \]

\(\text{LINS homepage: http://www.nonlinearscience.org.uk/}\)
\[- (|\gamma A - (\gamma - p + \lambda + m)| + 2) r + |p - \mu - m| = 0 \]

\((z \in \Delta, p \in \mathbb{N}, j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \gamma \in \mathbb{C} \setminus \{0\}, 0 \leq \lambda < 1, \text{ and } \eta > \max \lambda - p - 1) \).

Putting \(\lambda = \mu = m = 0 \) and \(p = 1 \), we have

Corollary 2.2. \(f \in A_p \) and suppose that \(g \in S^*[A, B; \gamma] \). If \(f(z) \) is majorized by \(g(z) \), then

\[|f'(z)| \leq |g'(z)| \quad \text{for} \quad |z| \leq r_3, \]

where \(r_3 \) is the smallest positive root of the following equation,

\[|\gamma A - B(\gamma - 1)| r^3 - (1 + 2B) r^2 - (|\gamma A - B(\gamma - 1)| + 2) r + 1 = 0. \]

Remarks :

(i) Putting \(\lambda = \mu = m = p = 1 \), and \(A = 1, B = -1 \), we have a known result obtain by Altinas et al. [1],

(ii) Putting \(\lambda = m = 0, \mu = p = 1 \) and \(A = 1, B = -1 \), we have the known result obtained by Mac-Gregor [7].

References

