The Study of a Class of the Fractional Brownian Motion Base on Wavelet

Xuewen Xia *
Hunan Institute of Engineering,Xiangtan,411104,China
Hunan Normal University,Changsha,410082,China
(Received 27 January 2010, accepted 18 October 2010)

Abstract: In this paper, we use the wavelet transform to the Fractional Brownian Motion by Haar wavelet ,we obtain some statistical properties about the stochastics processes and its density degree and wavelet express.

Keywords: Fractional Brownian Motion; wavelet analysis;wavelet transform; haar wavelet;density degree.

1 Introduction

The Fractional Brownian Motion is a class of important stochastic processes,about the processes,there are some study works([1-5]).In this paper,we study it use wavelet methods. With the rapid development of computerized scientific instruments comes a wide variety of interesting problems for data analysis and signal processing.In fields ranging from Extragalactic Astronomy to Molecular Spectroscopy to Medical Imaging to computer vision,One must recover a signal,curve,image,spectrum,or density from incomplete,indirect, and noisy data .Wavelets have contributed to this already intensely developed and rapidly advancing field .

Wavelet analysis is a remarkable tool for analyzing function of one or several variables that appear in mathematics or in signal and image processing. With hindsight the wavelet transform can be viewed as diverse as mathematics, physics and electrical engineering .The basic idea is to use a family of building blocks to represent the object at hand in an efficient and insightful way, the building blocks come in different sizes, and are suitable for describing features with a resolution commensurate with their sizes. Some persons have studied wavelet problems of stochastic process or stochastic system (see[6]-[14]).In this paper,we study a class of random processes using wavelet analysis methodsand study its energy, the energy express by density degree.

2 Basic definition

Definition 1 Fractional Brownian motion: Gauss processes $X_{t}(t \geq 0)$ be called φ-fractional Brownian motion $(0 < \varphi < 2)$, if $X_0=0$, $EX_t=0$, and

$$E(X_sX_t)=\frac{1}{2}(s^\varphi+t^\varphi-|s-t|^\varphi)$$

(1)

When $\varphi=\frac{1}{2}$, we have

$$E(X_sX_t)=\frac{1}{2}(s^{\frac{1}{2}}+t^{\frac{1}{2}}-|s-t|^{\frac{1}{2}})$$

(2)

Definition 2 Let X_t is stochastic processes, then its wavelet alternative is

$$W(s,x)=\int_{R}^{Z}X_t\psi\left(\frac{x-t}{s}\right)dt$$

(3)

where ψ is continuous wavelet

* Corresponding author. E-mail address: xxw1234567@163.com

Copyright © World Academic Press, World Academic Union IJNS.2011.06.15/475
Definition 3 Let $\psi(x)$ is
\[
\psi(x) = \begin{cases}
8 & 0 \leq x < \frac{1}{2} \\
-1, \frac{1}{2} \leq x < 1 \\
0, \text{other}
\end{cases}
\] (4)

Call $\psi(x)$ as haar wavelet.

3 Statistics property and energy

Use (3), we have
\[
\mathcal{W}(s, x) = \frac{1}{s} \mathcal{Z}_x x(t) dt - x(t) dt
\]

We have $E[\mathcal{W}(s, x)] = 0$.

Then relation function of $W(s, x)$ is
\[
R(\tau) = E[\mathcal{W}(s, x)\mathcal{W}(s, x + \tau)]
\]
\[
= \frac{1}{s^2} \int \mathcal{Z}_x x + \tau \int \mathcal{Z}_x x dt \int \mathcal{Z}_x x dt
\]
\[
= \frac{1}{s^2} \int \left(\mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau \right) d\mu dt
\]
\[
= \int \mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau d\mu dt
\]

Use (2), we have
\[
E[\mathcal{W}(s, x)] = \frac{1}{2} (u^\frac{1}{2} + v^\frac{1}{2} - |u - v|^\frac{1}{2})
\]

Let $u > v$, then we have
\[
I_1 = \frac{1}{s^2} \mathcal{Z}_x x + \mathcal{Z}_x x + \tau \int \mathcal{W}(s, x)\mathcal{W}(s, x + \tau) d\mu dt
\]
\[
= \frac{1}{s^2} \int \left(\mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau \right) d\mu dt
\]
\[
= \int \mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau d\mu dt
\]

\[
I_2 = -\frac{1}{s^2} \mathcal{Z}_x x + \mathcal{Z}_x x + \tau \int \mathcal{W}(s, x)\mathcal{W}(s, x + \tau) d\mu dt
\]
\[
= -\frac{1}{s^2} \int \left(\mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau \right) d\mu dt
\]
\[
= -\int \mathcal{Z}_x x + \tau \mathcal{Z}_x x + \tau d\mu dt
\]
\[I_3 = -\int_{x-s}^{x-s} \int_{x-s}^{x-s} E[u(x)v(y)]dudv \]
\[= -\frac{1}{s^2} \left(\int_{x-s}^{x-s} \frac{1}{2} (u\frac{x}{2} + v\frac{y}{2} - (u - v)\frac{y}{2})dudv - \frac{1}{3s^2} (x - s)^\frac{3}{2} - (x - s)^\frac{1}{2} - \frac{1}{3s^2} (x + \tau)^\frac{3}{2} - (x + \tau)^\frac{1}{2} \right) \]

\[I_4 = \frac{1}{s^2} \int_{x-s}^{x-s} \int_{x-s}^{x-s} E[u(x)v(y)]dudv \]
\[= \frac{1}{s^2} \left(\frac{1}{2} (u\frac{x}{2} + v\frac{y}{2} - (u - v)\frac{y}{2})dudv - \frac{1}{2s^2} \left(\frac{1}{3}(x - s)^\frac{3}{2} - (x - s)^\frac{1}{2} + \frac{2}{3s^2} (x - s + \tau)^\frac{3}{2} - (x - s + \tau)^\frac{1}{2} - \frac{2}{3s^2} (x - s)^\frac{3}{2} + \frac{2}{3s^2} (x - s + \tau)^\frac{3}{2} - \frac{2}{3s^2} \right) \right) \]
\[= \frac{1}{2s^2} \left(\frac{3}{2}(x - s)^\frac{3}{2} - (x - s)^\frac{1}{2} + \frac{2}{3s^2} (x - s + \tau)^\frac{3}{2} - (x - s + \tau)^\frac{1}{2} \right) \]

\[R'(\tau) = (I_1 + I_2 + I_3 + I_4)' \]
\[= \frac{1}{8s^2} \left[\frac{3}{2} (x + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{4}{15} \left[(s - \tau)^\frac{3}{2} + \frac{s}{2} (s - \tau)^\frac{1}{2} \right] - \frac{1}{6s^2} \left[(x - s + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{2}{15s^2} \left[(s + \tau)^\frac{3}{2} + \frac{s}{2} (s + \tau)^\frac{1}{2} \right] - \frac{1}{6s^2} \left[(x + \tau)^\frac{3}{2} - \frac{3}{4} (x + \tau)^\frac{1}{2} \right] - \frac{2}{15s^2} \left[(s - \tau)^\frac{3}{2} - \frac{3}{4} (s - \tau)^\frac{1}{2} + \frac{15}{4} (s - \tau)^\frac{3}{2} - \frac{15}{4} (s - \tau)^\frac{1}{2} \right] \right] \]

\[R''(\tau) = \frac{3}{8s^2} (x + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{4}{15} \left[(s - \tau)^\frac{3}{2} + \frac{s}{2} (s - \tau)^\frac{1}{2} \right] - \frac{1}{6s^2} \left[(x - s + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{2}{15s^2} \left[(s + \tau)^\frac{3}{2} + \frac{s}{2} (s + \tau)^\frac{1}{2} \right] - \frac{1}{6s^2} \left[(x + \tau)^\frac{3}{2} - \frac{3}{4} (x + \tau)^\frac{1}{2} \right] - \frac{2}{15s^2} \left[(s - \tau)^\frac{3}{2} - \frac{3}{4} (s - \tau)^\frac{1}{2} + \frac{15}{4} (s - \tau)^\frac{3}{2} - \frac{15}{4} (s - \tau)^\frac{1}{2} \right] \right] \]

Then,
\[R'''(\tau) = \frac{3}{8s^2} (x - s + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{15}{4} \left[(s - \tau)^\frac{3}{2} - \frac{3}{4} (s - \tau)^\frac{1}{2} \right] + \frac{1}{15s^2} \left[(x - s + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{15}{4} (s - \tau)^\frac{3}{2} - \frac{15}{4} (s - \tau)^\frac{1}{2} \right] + \frac{5}{8s^2} \left[(x - s + \tau)^\frac{3}{2} - \frac{3}{4} (x - s + \tau)^\frac{1}{2} + \frac{15}{4} (s - \tau)^\frac{3}{2} - \frac{15}{4} (s - \tau)^\frac{1}{2} \right] \]

Use above, we can obtain \(R^{(4)}(0) \), then we can obtain the zero density of \(W(s, x) \) and the average density \(\frac{R^{(4)}(0)}{\pi R(0)} \).
4 Wavelet representation

Let real function φ is standard orthogonal element of multiresolution analysis $\{V_j\}_{j \in Z}$ (see [4]), then exist $h_k \in l^2$, have

$$\varphi(t) = \sqrt{2} \sum_{k} \varphi(2t - k)$$

Let

$$\psi(t) = \sqrt{2} \sum_{k} (-1)^k h_{1-k} \varphi(2t - k)$$

Then wavelet express of $X(t)$ in mean square is

$$X(t) = \sum_{j \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} C_{j,n} \int X(t) \varphi(2^{-j} t - n) dt$$

Where

$$C_{j,n} = 2^{-j/2} \int X(t) \varphi(2^{-j} t - n) dt$$

Then have

$$E \sum_{k} \int_{R^2} d_0^j d_0^k = 2^{-\frac{j+k}{2}} \sum_{j,k} \int_{R^2} \int E[X(t)X(s)] \varphi(2^{-j} t - n) \varphi(2^{-k} s - m) ds \ d t$$

We may also can analyse $C_{j,n}^\alpha$ as above.

Now we consider function $\psi(t)$ that exist compact support set on $[-k_1, k_2], k_1, k_2 \geq 0$, and exist enough large M, have $t^m \psi(t) dt = 0, 0 \leq m \leq M - 1$, then φ exist compact support set on $[-k_3, k_4]$ satisfy $k_1 + k_2 = k_3 + k_4, k_3, k_4 \geq 0$.

Let

$$b(j, k) = \langle X(t), \psi_{j,k} \rangle, a(j, k) = \langle X(t), \varphi_{j,k} \rangle$$

Let J is a constant, then

$$\sum_{j \geq J} \sum_{k \in \mathbb{Z}} 2^j \varphi(2^j x - k), k \in Z \cup 2^j \psi(2^j t - k), k \in Z$$

are a standard orthonormal basis of space $L^2(R)$, then have

$$X(t) = \sum_{j \geq J} \sum_{k \in \mathbb{Z}} a(j, k) \varphi(2^j t - K) + \sum_{j \geq J} \sum_{k \in \mathbb{Z}} 2^j b(j, K) \psi(2^j t - K)$$

Therefore, the self-correlation function of $b(j, m)$

$$R_b(j, K; m, n) = E[b(j, m)b(k, n)] = 2^{-\frac{j+k}{2}} \sum_{j \geq J} \sum_{k \in \mathbb{Z}} \int_{R^2} \int E[X(t)X(s)] \varphi(2^j t - m) \varphi(2^k s - n) dt \ d s$$

Let

$$F(2^{j-K}, t) = \psi(2^{j-K} s - t) \psi(s) ds$$

If $\psi(t)$ have $(M - 1)$-order waning moments, then $F(2^{j-K}, t)$ have $(2M - 1)$ order waning moments. In actual,

$$R^2 \int t^m \psi(2^{j-K} s - t) \psi(s) ds dt = \frac{R^2}{2^{j-k}} \int \psi(2^{j-K} s - t) \psi(t) ds dt$$

Let

$$F(2^{j-K}, t) = \psi(2^{j-K} s - t) \psi(s) ds$$

Therefore we have

\[LINS \text{ homepage: http://www.nonlinearscience.org.uk/} \]
Theorem 1 Let $X(t)$ is solution process of system (1), $\psi(t)$ have compact supported set on $[-K_1, K_2]$, $K_1, K_2 > 0$, and $\psi(t)$ have $(M - 1)$-order waning moments, and $\psi(t)$ is standard orthonormal wavelet function. Then stochastic process $b(J, m)$ are stationary process.

References

IJNS email for contribution: editor@nonlinearscience.org.uk