Hausdorff Dimension of Generalized Sierpinski Carpet

Qiuli Guo1, Haiyi Jiang2, Lifeng Xi1++

1 Institute of Mathematics, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P. R. China
2 Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China

(Received 27 October 2006, accepted 14 November 2006)

Abstract. From a convex quadrangle we construct a generalized Sierpinski carpet not self-similar, and prove that its Hausdorff dimension is $\frac{\log 8}{\log 3}$ by using a bi-Lipschitz mapping.

Keywords: Sierpinski carpet; Hausdorff dimension; bi-Lipschitz mapping

1 Introduction

Recently the research of fractal geometry ([1]-[4]) and chaotic phenomena([5]-[7]) are very interesting. We recall the standard result on self-similar set ([1],[4]). A mapping $S : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called a contractive similitude with ratio $\rho \in (0, 1)$, if $|S(x) - S(y)| = \rho|x - y|$ for all $x, y \in \mathbb{R}^n$. Suppose $\{S_i\}_{i=1}^m$ is a family of similitudes with contraction ratios ρ_1, \cdots, ρ_m. Then there exists a unique compact set E such that $E = \bigcup_{i=1}^m S_i(E)$, here E is called the self-similar set generated by $\{S_i\}_{i=1}^m$. We say that the open set condition (OSC) holds for $\{S_i\}_{i=1}^m$, if there exists a bounded non-empty open set $U \subset \mathbb{R}^n$ such that $\bigcup_{i=1}^m S_i(U) \subset U$ and $S_i(U) \cap S_j(U) = \emptyset$ for $i \neq j$. Let $\dim_H E = s$, where $\dim_H E$ denotes the Hausdorff dimension of E. If OSC holds, then $\rho_1^s + \rho_2^s + \cdots + \rho_m^s = 1$.

We also recall the Sierpinski carpet ([2], [4]), a classical self-similar fractal set in the plane \mathbb{R}^2. Take a unit square $[0, 1]^2$, for eight points (x_i, y_i) from the set $\{0, 1, 2\} \times \{0, 1, 2\} \setminus \{1, 1\}$, let $\phi_i(x, y) = [(x, y) + (x_i, y_i)]/3$ with ratio $1/3$. Then the Sierpinski carpet F of \mathbb{R}^2 is the self-similar set generated by $\{\phi_i\}_{i=1}^8$, where OSC holds with $U = (0, 1)^2$ and thus $\dim_H F = \log 8/\log 3$.

![Figure 1: The steps of generating the Sierpinski carpet](image)

In this paper, we deal with the Hausdorff dimension of generalized Sierpinski carpet defined as follows.

Take a convex quadrangle Q_0, we trisect every side of the quadrangle and connect the corresponding trisection points of opposite sides, then we get a division of Q_0 into nine small quadrangles with their interiors pairwise disjoint, delete the small quadrangle which is right in the center of Q_0. By this “rule”, we then repeat the process for the eight remaining sub-quadrangles, and obtain eight sub-sub-quadrangles for each remaining sub-quadrangles, continue this process inductively.

++ Corresponding author. Tel. : +86-574-8822 2249; Fax: +86-574-8822 2249.
E-mail address: xilf@zwu.edu.cn.
In this manner, we get a sequence of compact sets \(\{ K_l \}_{l=0}^{\infty} \), where \(K_0 = Q_0 \), and \(K_l \) is in general a union of \(8^l \) convex quadrangles which are obtained from \(K_{l-1} \) by applying the basic “rule” mentioned above to each of the \(8^{l-1} \) quadrangles of \(K_{l-1} \). Then \(K_l \subseteq K_{l-1} \) for all \(l \geq 1 \). Set

\[
K = \bigcap_{l=0}^{\infty} K_l,
\]

which is called the \textit{generalized Sierpinski carpet} of convex quadrangle \(Q_0 \).

The generalized Sierpinski carpet is not a self-similar set (see figure 2). How to calculate its Hausdorff dimension? In this paper, we will prove the following main result by using a bi-Lipschitz mapping (See [3], [8]-[11] for Lipschitz equivalence).

\textbf{Theorem 1.1} Suppose \(Q_0 \) is a convex quadrangle. Let \(K \) be the generalized Sierpinski carpet of \(Q_0 \). Then \(\dim_H K = \log 8 / \log 3 \).

\section{Preliminaries}

Suppose \((X, d)\) and \((Y, D)\) are metric spaces. A bijection \(f : (X, d) \to (Y, D) \) is said to be a bi-Lipschitz mapping, if there are constants \(C_1, C_2 > 0 \) such that for all \(x_1, x_2 \in X \),

\[
C_1 d(x_1, x_2) \leq D(f(x_1), f(x_2)) \leq C_2 d(x_1, x_2).
\]

The following lemma is also a standard result in fractal geometry (see for example [1], [2] and [4]).

\textbf{Lemma 2.1} If \(f : (X, d) \to (Y, D) \) is a bi-Lipschitz mapping, then \(\dim_H A = \dim_H f(A) \) for all \(A \subset X \).

Given points \(M, N \subset \mathbb{R}^2 \) and the line segment \(MN \), suppose a point \(L \) lies in \(MN \). If there exists \(\lambda \in [0, 1] \) such that \(|ML| : |MN| = \lambda \), then

\[
L = [(1 - \lambda)M + \lambda N] \subset \mathbb{R}^2,
\]

and the point \(L \) is called the point of definite proportion \(\lambda \) in \(MN \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{bi-Lipschitz_mapping.png}
\caption{bi-Lipschitz mapping from \([0,1]^2\) to convex hull of \(Q_0 \)}
\end{figure}

Take a unit square \([0,1]^2\) and a convex quadrangle \(Q_0 \) respectively (see Figure 3). Given any point \((\alpha, \beta) \in [0,1]^2\), as in Figure 3, in the quadrangle \(Q_0 \), we connect the points of definite proportion \(\alpha \) in \(AB \),...
and DC to get a line segment, which is called α quasi-vertical segment; similarly, we connect the points of definite proportion β in AD and BC to get a line segment, which is called β quasi-horizontal segment. The point of intersection of α quasi-vertical segment and β quasi-horizontal segment is denoted by $[\alpha, \beta]$.

Denote by $\text{cov}(Q_0)$ the convex hull of quadrangle Q_0.

Let $f : [0, 1]^2 \to \text{cov}(Q_0)$ be defined by

$$f(\alpha, \beta) = [\alpha, \beta]$$

for any $(\alpha, \beta) \in [0, 1]^2$. (3)

In order to prove Theorem 1, we need some conclusions in plane geometry.

![Figure 4: GH: α quasi-vertical segment; EF: β quasi-horizontal segment](image)

Lemma 2.2 Given a convex quadrangle, $[\alpha, \beta]$ is not only the point of definite proportion α in β quasi-horizontal segment, but also the point of definite proportion β in α quasi-vertical segment.

Proof. As in Figure 4, we have

$$E = (1 - \beta)A + \beta D, \quad F = (1 - \beta)B + \beta C,$$

$$H = (1 - \alpha)A + \alpha B, \quad G = (1 - \alpha)D + \alpha C.$$

It suffices to verify that the point of definite proportion α in EF is just the point of definite proportion β in HG. In fact, we have

$$[(1 - \alpha)(1 - \beta)]A + [\alpha(1 - \beta)]B + (\alpha\beta)C + [(1 - \alpha)\beta]D$$

$$= (1 - \alpha)(1 - \beta)A + \alpha(1 - \beta)B + \beta C$$

$$= (1 - \beta)(1 - \alpha)A + \alpha B + \beta [(1 - \alpha)D + \alpha C]$$

that is $(1 - \alpha)E + \alpha F = (1 - \beta)H + \beta G$. □

Fix any vertex x of Q_0, for any $(\alpha, \beta) \in [0, 1]^2$, let $\theta_x(\alpha, \beta)$ denote the included angle between the α quasi-vertical segment and β quasi-horizontal segment such that the point x is contained in the corresponding sector determined by the angle.

Lemma 2.3 Given a convex quadrangle Q_0 with vertexes $\{A, B, C, D\}$, there exists $\theta_0 > 0$ such that $\theta_x(\alpha, \beta) \geq \theta_0$ for any (α, β) and any vertex x.

Proof. Note that $\theta_x(\alpha, \beta)$ is a continuous function with respect to $(\alpha, \beta) \in [0, 1]^2$. Here $[0, 1]^2$ is compact set, and $\theta_x(\alpha, \beta) > 0$ for each (α, β), and thus we can get the minimal value $\min_{(\alpha, \beta)\in[0,1]^2} \theta_x(\alpha, \beta) > 0$ of $\theta_x(\alpha, \beta)$. Let

$$\theta_0 = \min_{x \in \{A, B, C, D\}} \min_{(\alpha, \beta)\in[0,1]^2} \theta_x(\alpha, \beta) > 0.$$

And thus $\theta_x(\alpha, \beta) \geq \theta_0$. □
Lemma 2.4 Fix $\theta^* > 0$. Suppose a, b, c are side lengths of any triangle with the angle $\theta \geq \theta^*$ (see Figure 5). Then there exists a constant $q = q(\theta^*) > 0$ such that

\[q(a + b) \leq c \leq a + b. \]

Proof. By triangle inequality, we have

\[c \leq a + b. \]

On the other hand, we shall distinguish two cases:

Case 1: θ^* is an acute angle.

In this case $\cos \theta^* > 0$. By cosine law, we have

\[
c = \sqrt{a^2 + b^2 - 2ab \cos \theta} \geq \sqrt{a^2 + b^2 - 2ab \cos \theta^*}
\geq \sqrt{(1 - \cos \theta^*)(a^2 + b^2)} + (a - b)^2 \cos \theta^*
\geq \sqrt{(1 - \cos \theta^*)/(a + b)} = \sin(\theta^*/2)(a + b).
\]

Take $q = q(\theta^*) = \sin(\theta^*/2)$, the conclusion holds.

Case 2: θ^* is not an acute angle.

In this case $\cos \theta \leq 0$, we have

\[
c = \sqrt{a^2 + b^2 - 2ab \cos \theta} \geq \sqrt{(a^2 + b^2)} \geq \sqrt{1/2}(a + b)
\]

Take $q = q(\theta^*) = \sqrt{1/2}$, the conclusion holds. \(\Box\)

3 Proof of Theorem 1

Let F be the Sierpinski carpet and K the generalized Sierpinski carpet. It follows from Lemma 2.2 that $f(F) = K$, where f is defined in formula (3).

Since $\dim_H F = \log 8/\log 3$, by Lemma 2.1, it suffices to prove that $f : [0, 1]^2 \to \text{cov}(Q_0)$ is a bi-Lipschitz mapping, that means there exist constants $C_1, C_2 > 0$ such that for any $(\alpha, \beta), (\alpha', \beta') \in [0, 1]^2$,

\[C_1 d((\alpha, \beta), (\alpha', \beta')) \leq d([\alpha, \beta], [\alpha', \beta']) \leq C_2 d((\alpha, \beta), (\alpha', \beta')) ,\]

where d is the Euclidean metric in \mathbb{R}^2.

Since $d((\alpha, \beta), (\alpha', \beta')) = \sqrt{(\alpha - \alpha')^2 + (\beta - \beta')^2}$, we have

\[|\alpha - \alpha'| + |\beta - \beta'| \leq d((\alpha, \beta), (\alpha', \beta')) \leq |\alpha - \alpha'| + |\beta - \beta'| ,\]

which implies we need only to find constants $\delta_1, \delta_2 > 0$ such that

\[\delta_1 |\alpha - \alpha'| + |\beta - \beta'| \leq d([\alpha, \beta], [\alpha', \beta']) \leq \delta_2 (|\alpha - \alpha'| + |\beta - \beta'|) .\]

Figure 5: Estimation of c in terms of $a + b$
Proof of formula (4):
Let $\varsigma(\alpha)$ denote the length of α quasi-vertical segment. Then $\varsigma(\alpha)$ is a continuous function with respect to $\alpha \in [0, 1]$, and thus there exist constants $v_1, v_2 > 0$ such that
\[
 v_1 \leq \varsigma(\alpha) \leq v_2.
\] (5)

Let $\tau(\beta)$ denote the length of β quasi-horizontal segment. Then $\tau(\beta)$ is a continuous function with respect to $\beta \in [0, 1]$, and thus there exist constants $h_1, h_2 > 0$ such that
\[
 h_1 \leq \tau(\beta) \leq h_2.
\] (6)

As in Figure 6, by Lemma 2.2, we have
\[
a = |\alpha - \alpha'| \cdot \tau(\beta),
\]
\[
b = |\beta - \beta'| \cdot \varsigma(\alpha').
\] (7)

It follows from Lemma 2.3 and 2.4 that
\[
q(a + b) \leq d([\alpha, \beta], [\alpha', \beta']) = c \leq a + b,
\] (8)

where $q > 0$ is a constant.

Let $\delta_1 = q \min(v_1, h_1)$ and $\delta_2 = \max(v_2, h_2)$, then (4) follows from (5), (6), (7) and (8).

Therefore, Theorem 1 is proved.

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 10671180, 10571063). The authors will appreciate Professor Zhi-Ying WEN and Zhi-Xiong WEN for their helpful comments.

References

IJNS homepage: http://www.nonlinearscience.org.uk/

IJNS email for contribution: editor@nonlinearscience.org.uk