Painleve Integrability, Backlund Transformation and Solitary Solutions’ Stability of Modified DGH Equation

Jiuli Yin
Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University
ZhenJiang, Jiangsu, 212013, P. R. China

(Received 26 October 2006, accepted 7 November 2006)

Abstract: In this paper, modified DGH equation (named MDGH equation) is proved to be Painleve integrable. And the truncated Painleve expansion is used to obtain an auto- Backlund transformation. Finally, the solitary wave solutions of M DGH equation are proved to be orbital stable.

Key words: modified DGH equation; new solitary wave solution; Backlund transformation; orbital stable

1 Introduction

In 1993, Camassa and Holm derived the new completely integrable dispersive wave equation. For water waves using Hamiltonian methods, namely Camassa-Holm equation[1, 2, 3]:

$$u_t + 2\omega u_x - u_{xxx} + 3uu_x = 2u_x u_{xx} + uu_{xxx}$$ (1.1)

Lixin Tian and other researchers[4] also considered generalized Camassa-Holm equation and the modified Camassa-Holm equation

$$u_t + ku_x - u_{xxx} + au^2 u_x = 2u_x u_{xx} + uu_{xxx}$$

and obtained some new exact peaked solitary wave solutions.

Dullin Gottwald and Holm got an integrable shallow-water equation that combined the linear dispersion, namely DGH equation[5, 6, 7, 8, 9]

$$u_t + 2\omega u_x - u_{xxx} + 3uu_x + \gamma u_{xxx} = 2u_x u_{xx} + uu_{xxx}$$ (1.2)

In this paper, we consider modified DGH equation(MDGH equation)

$$u_t - u_{xxx} + 2\omega u_x + au^2 u_x + \gamma u_{xxx} = 2u_x u_{xx} + uu_{xxx}$$ (1.3)

where a is an arbitrary constant.

1 Corresponding author. E-mail address: yjledu@163.com

Copyright © World Academic Press, World Academic Union
IJNS.2006.12.15/051
2 Painleve integrability of MDGH equation

As we know, an equation is called Painleve integrable when the equation has Painleve property which means the solutions to the equation are single valued about an arbitrary singular manifold. The Kruskal method [10] is used to prove the integrability of MDGH equation.

\[u \text{ in Eq.(1.3)is expanded by a local Laurent expansion in the neighborhood of singular manifold } \phi(x, t) = 0, \text{ namely} \]

\[u = \sum_{j=0}^{\infty} u_j \phi^j + \alpha \] \hspace{1cm} (2.1)

Substituting the leading orders of the solutions to (1.3)

\[u = u_0 \phi^\alpha \] \hspace{1cm} (2.2)

into (1.3) for balancing the terms \(u^2 u_x \) and \(2u_x u_{xx} + uu_{xxx} \), we have

\[\alpha = -2, \quad u_0 = \frac{24}{a} \phi_x^2 \] \hspace{1cm} (2.3)

Substituting (2.1), (2.2), (2.3) into (1.3) yields the recursion relation of the expansion coefficients \(u_j \), namely

\[(j + 1)(j - 6)(j - 8)u_j = F_j(\phi_x, \phi_t, \ldots, u_0, u_1, \ldots, u_{j-1}) \] \hspace{1cm} (2.4)

where \(F_j \) is a function of \(u_0, u_1, \ldots, u_{j-1} \) and the derivatives of \(\phi \). From (2.4), we know that the three required resonance conditions are

\[j = -1, 6, 8 \] \hspace{1cm} (2.5)

The resonance at \(j = -1 \) represents the arbitrariness of the singularity manifold \(\phi(x, t) = 0 \). So we only prove the existence of arbitrary functions in the other two cases \(j = 6, 8 \) for the integrability of MDGH equation, namely

\[F_6 = 0, \quad F_8 = 0 \] \hspace{1cm} (2.6)

According to the method of Kruskal

\[\phi = x + \psi(t) \] \hspace{1cm} (2.7)

where \(\psi(t) \) is an arbitrary function of \(t \), and substitute (2.1), (2.2), (2.3), (2.7) into (1.3), we can obtain the following

\[u_0 = \frac{24}{a} \] \hspace{1cm} (2.8)

\[u_1 = u_3 = u_5 = 0 \] \hspace{1cm} (2.9)

\[u_2 = -\frac{1}{3} \psi_t - \frac{1}{3} \gamma \] \hspace{1cm} (2.10)

\[u_4 = \frac{1}{20} \psi_t - \frac{w}{10} - \frac{a}{180} \psi^2 - \frac{a \gamma}{90} \psi_t - \frac{a \gamma^2}{180} \] \hspace{1cm} (2.11)

\[u_7 = \frac{13a}{5760} \psi_{tt} - \frac{a^2}{8640} \psi_t \psi_t - \frac{a^2 \gamma}{8640} \psi_{tt} \] \hspace{1cm} (2.12)

Using Painleve analysis, we can also obtain auto-Backlund transformation of Eq.(1.3),

\[u = \frac{24 \phi_x^2}{a \phi^2} - \frac{24 \phi_{xx}}{a \phi} + u_2 \] \hspace{1cm} (2.13)

IJNS email for contribution: editor@nonlinearscience.org.uk
where ϕ satisfies the following five equations (because the formula is so long, just one part of it is shown here):

$$
-2au^2u_{x,x} - \phi_{x,x,t} + u_{x,x,x,x} \phi_{x,x} - 2\omega \phi_{x,x,x} - au^2 \phi_{x,x,x} + 2u_{x,x} \phi_{x,x,x} + 2u_{x} \phi_{x,x,x,x} = 0
$$

(2.14)

3 Stability of solitary solutions

We assume that Eq. (1.3) has the traveling wave solution formed as

$$
u (x, t) = \phi_c (\varepsilon), \varepsilon = x - ct
$$

(3.1)

where $c > 0$ is the wave speed and Eq. (1.3) becomes

$$-c\phi'_c + c\phi''_c = -a\phi^2 \phi'_c + 2\phi'_c \phi''_c + \phi_c \phi'''_c
$$

(3.2)

where $'$ means to take derivative. In [11], we have obtained abundant solitary solutions of (3.2). The main purpose of this section is to show the orbital stability of the solitary solutions.

Theorem 3.1 The solitary solution ϕ_c is orbital stable if for any $\varepsilon > 0$, there is $\delta > 0$ such that for any $T \leq \infty$ and $u \in C([0, T]; H^1(R))$ is a solution to (1.1) with

$$
\| u_0 - \phi_c \|_{H^1} \leq \delta; \text{ then } \inf_{\varepsilon \in \mathbb{R}} \| u(\cdot, t) - \phi_c (\cdot, -\varepsilon) \|_{H^1} \leq \varepsilon, \text{ for every } t \in [0, T].
$$

Now we recall a theorem proved by Grillakis et al. in [12,13], in order to prove the orbital stability of the solitary waves of Eq. (1.3).

Theorem 3.2 [12, 13]. If satisfying assumptions (i)–(iv), the is orbital stable.

(i) There is a bounded linear operator $B : X \to X^*$ such that $B^* = B, Q(u) : X \to R$ is defined by

$$
\| Bu, u \| < \frac{1}{2}
$$

(ii) (Existence of solutions). For each $x_0 \in X, \exists t_0 > 0$ and a solution u of Eq. (3.4) in the interval $[0, t]$ such that $u(0) = u_0, and

$$
E(u(t)) = E(u_0)Q(u(t)) = Q(u_0)
$$

for $t \in [0, t_0].$

(iii) (Existence of traveling waves). There exists real $\eta_1 < \eta_2$ and a mapping

(a) $\eta \to \phi_\eta$ from the open interval (η_1, η_2) into X which is C^1 such that for each $\eta \in (\eta_1, \eta_2)$.

[IJNS homepage: http://www.nonlinearscience.org.uk/]
\[(b) \quad E'(\eta) = \eta Q' (\eta) \]
\[(c) T'(0) \phi_\eta \neq 0 \]
\[(d) \quad \text{For each } \eta \in (\eta_1, \eta_2), \quad H_\eta = E''(\eta) + \eta Q''(\eta) \text{ has exactly one negative simple eigenvalue and has its}
\quad \text{kernel spanned by } T'(0) \phi_\eta \text{ and the rest of its spectrum is positive and bounded away from zero.} \]

Proof: Note that equation (1.3) can be written in Hamiltonian form as
\[
\frac{du}{dt} = \partial_x (1 - \partial_x^2)^{-1} E'(u(t)),
\]
where \(E(u(t)) = -\frac{1}{2} \int_R \frac{\partial^2 u}{\partial x^2} + u u_x^2 + 2\omega u^2 - \gamma u_x^2 \) dx.

We can verify (a)–(c) by letting
\[
B = 1 - \partial_x^2, \quad Q(u) = \frac{1}{2} \int_R (u^2 + u_x^2) dx,
\]
and
\[
T(c) \phi_c = \phi_c(x - ct), \quad E'(\phi_c) + cQ(\phi_c) = 0.
\]

So we only have to check assumption (d).

Since \(H_c = E''(u(t)) + cQ''(u(t)) = -\partial_x ((c + \gamma - u) \partial_x) - 2au^2 + 2u_{xx} + 2c - 4w. \)

Suppose \(\lambda \) is the eigenvalue to \(H_c \), with the corresponding eigenfunction \(v \); that is
\[
H_c v = \lambda v
\]

Then by Liouville transformation
\[
y = \int_0^x \frac{1}{\sqrt{2(c + \gamma) - 2\phi_c(z)}} dz
\]
and \(\psi(y) = (2(c + \gamma) - 2\phi_c(z))^{\frac{1}{2}} v(x) \), we obtain an equation for \(\psi(y) \) as
\[
F_c \psi(y) = (-\partial_y^2 + p_c(y) + c - 2\omega) \psi(y) = \lambda \psi(y)
\]
where \(p_c(y) = -a\phi_c^2(x) + \frac{1}{2} \phi_c'' - \frac{(\phi_c'(x))^2}{16(c + \gamma - \phi_c(x))} \), and \(p_c(y) \to 0 \) as \(|y| \to 0. \)

By the property of \(\phi_c \) and due to the spectral theorem \([8]\), we have the property of \(F_c \) as
(I) essential spectrum \([c, \infty)\);
(II) only finite eigenvalues which are less than \(c \);
(III) the function to the \(n \)th eigenvalue (in increasing order) has \(n-1 \) zeros.

Note that the properties (I)–(III) were preserved by Liouville transformation, therefore the operator \(H_c \) has these properties.

On the other hand, it is computed directly that
\[
H_c(\phi_c') = 0 \quad \phi'_c(0) = 0 \quad \phi'_c(x) \neq 0 \quad \text{for } x \neq 0
\]

Thus assumption (iii) followed forms the properties (I)–(III) directly.

Therefore, the orbit is stable by using Theorem 2.

Acknowledgments

The author thanks Professor Lixin Tian for his valuable suggestions to this paper. Research was supported by National Treasury Central Payment Item of Jiangsu Province (No:1223000054) and the High-level Talented Person Special Subsidizes of Jiangsu University(No:1283000109).

IJNS email for contribution: editor@nonlinearscience.org.uk
References

[4] Lixin Tian, Xiuying Song: New peaked solitary wave solutions of the generalized Camassa-holm equa-

[5] Dullin HR, Gottwald G and Holm DD, An integrable shallow water equation with linear and nonlinear

[6] Lixin Tian, Guilong Gui, Yue Liu, On the well-posedness problem and the scattering problem for the

[9] Lixin Tian, Guochang Fang, Guilong Gui: Well-posedness and Blowup for an integrable Shallow water

981(2004)