Flat Chain and Flat Cochain Related to Koch Curve

Lifeng Xi *
Institute of Mathematics, Zhejiang Wanli University
Ningbo, 315100, P. R. China
(Received 15 December 2006, accepted 2 February 2007)

Abstract: The theory of flat chain and flat cochain is discussed to solve a problem that how to get the integration with respect to a Lipschitz form defined on the Koch curve.

Keywords: Fractal; geometric integration theory; flat chain; flat cochain; Koch curve

It is well known that the integral of any differential form along any smooth curve can be defined. But how to define the integral of some Lipschitz form along some fractal curve, for example, the Koch curve? Please see [1-6] for fractal and chaos.

This paper defines the integral of any Lipschitz form along the Koch curve. Here we say \(\omega \) is a Lipschitz form, if \(\omega = f \, dx + g \, dy \) with \(f, g \) being Lipschitzian.

1 Flat Chain

Simplex with its boundary [7]
In Euclidean space \(\mathbb{R}^n \), we consider the simplex of dimension \(r \) with \(r \leq n \) (\(r \)-simplex in short), which is a convex polyhedron consisting of \(r + 1 \) vertexes. As in Figure 1, we have 0-simplex, 1-simplex and 2-simplex,· · ·.

![Figure 1: 0-simplex, 1-simplex and 2-simplex](image)

It is noticed that 2-simplex is oriented. Similarly, we think \(r \)-simplex \(v_0v_1 \cdots v_r \) and \(v_{i_0}v_{i_1} \cdots v_{i_r} \) are the same if the permutation \(i_0i_1 \cdots i_r \) on \(\{0, \cdots , r\} \) is even, and \(v_0v_1 \cdots v_r = -v_{i_0}v_{i_1} \cdots v_{i_r} \) if permutation \(i_0i_1 \cdots i_r \) is odd.

![Figure 2: orientation of 2-simplex, \(abc = -acb \)](image)

*Tel.: +86-574-8822 2249; Fax: +86-574-8822 2249. E-mail address: xilf@zwu.edu.cn.
The boundary of simplex \(v_0v_1 \cdots v_r \) is defined by
\[
\partial(v_0v_1 \cdots v_r) = \sum_i (-1)^i v_0 \cdots v_{i-1}v_{i+1} \cdots v_r,
\]
that means the boundary of \(r \)-simplex consists of linear combination of \((r - 1)\)-simplexes.

Polyhedron with its boundary [7]

Spanning all the \(r \)-dimensional simplexes to be a linear space on \(\mathbb{R} \), we call any element \(A \) of this space a \(r \)-dimensional Polyhedron, and we can write
\[
A = a_1 \sigma_1 + \cdots + a_n \sigma_n \text{ with } a_i \in \mathbb{R} \text{ for each } i,
\]
where \(\sigma_1, \ldots, \sigma_n \) are \(r \)-dimensional simplexes which are pairwise non-overlapping.

Suppose \(A = a_1 \sigma_1 + \cdots + a_n \sigma_n \), then the boundary \(\partial A \) of Polyhedron \(A \) can be defined by
\[
\partial A = a_1 \partial \sigma_1 + \cdots + a_n \partial \sigma_n.
\]

In this paper, we let \(\text{Vol}(\sigma) \) denote the volume of simplex \(\sigma \), which is the \(r \)-dimensional Lebesgue measure of \(\sigma \). For example, \(\text{Vol}(pq) = |p - q| \) the length of the segment of \(pq \), and \(\text{Vol}(abc) \) is the area of triangle \(abc \). If \(A = a_1 \sigma_1 + \cdots + a_n \sigma_n \) with \(\sigma_1, \ldots, \sigma_n \) pairwise non-overlapping, the mass \(M(A) \) of \(A \) is defined as
\[
M(A) = |a_1| \cdot \text{Vol}(\sigma_1) + \cdots + |a_n| \cdot \text{Vol}(\sigma_n).
\]

For example in Figure 3, we have two parallel directed simplexes \(S, T \) of length 1.

![Figure 3: parallel simplexes S and T](http://www.nonlinearscience.org.uk/)

Then \(M(S) = 1 \), and \(M(T) = 1 \) and
\[
M(S - T) = \text{Vol}(S) + | - 1 | \cdot \text{Vol}(T) = 2
\]

Flat norm and flat chain [7]

In the above figure, when \(S \) is fixed and move \(T \) such that \(T \) is close to \(S \) more and more, we can define a norm \(| \cdot | \) such that \(|T - S| \to 0 \).

For polyhedron \(T \), let flat Norm \(| T |\) of \(T \) be defined by
\[
|T| = \inf \{ M(A) + M(B) : T = A + \partial B \}.
\]

![Figure 4: A circle composed of \(-S, A2, T, A1\)](http://www.nonlinearscience.org.uk/)

Let \(B \) be the solid square in the figure, then
\[
-S + A2 + T + A1 = \partial B,
\]
i.e., \(T - S = -(A1 + A2) + \partial B \). Let \(A = -(A1 + A2) \), then
\[
T - S = A + \partial B,
\]

IJNS homepage: http://www.nonlinearscience.org.uk/
where \(M(A) = 2\varepsilon \) and area of \(B \) is \(\varepsilon \), which means \(M(B) = \varepsilon \). By the above definition, we have
\[
|T - S| \leq M(A) + M(B) = 2\varepsilon + \varepsilon = 3\varepsilon \to 0.
\]

We have following 4 property of flat norm:

1. \(0 \leq |T| \leq M(T) \) (Let \(T = T + \partial 0 \));
2. \(|kT| = |k| \cdot |T| \). (Since \(M(kA) = |k|M(A) \));
3. \(|S + T| \leq |S| + |T| \) (Since \(M(A_1 + A_2) \leq M(A_1) + M(A_2) \));
4. \(|T| = 0 \) if and only if \(T = 0 \).

Proof of (4): It suffices to show that \(T \neq 0 \) implies \(|T| > 0 \).

Let \(T = a_1\sigma_1 + \cdots + a_n\sigma_n \), then we can construct non-negative \(C^\infty \) differential form \(\omega \) supported on one of simplex such that
\[
\int_T \omega > 0.
\]

On the other hand, let \(T = A + \partial B \). Because \(B \) is piecewise smooth, it follows from Stokes’s formula that
\[
\int_{\partial B} \omega = \int_B d\omega,
\]
hence
\[
|\int_T \omega| = |\int_A \omega + \int_{\partial B} \omega| \leq |\int_A \omega| + |\int_B d\omega| \leq M(A) \sup |\omega| + M(B) \sup |d\omega|.
\]
Let \(||\omega|| = \sup(|\omega|, |d\omega|) \), then the above inequality shows that
\[
|\int_T \omega| \leq [M(A) + M(B)] \cdot ||\omega||
\]
Takeing \(A \) and \(B \) such that \(T = A + \partial B \) and \(M(A) + M(B) \to |T| \), then we have
\[
0 < |\int_T \omega| \leq |T| \cdot ||\omega||
\]
That means \(|T| > 0 \). \(\square \)

By the above 4 properties, the flat norm of polyhedron is a norm on the linear space spanning by \(r \)-dimensional polyhedron. Making completion of this linear space by flat norm to obtain a new space, we call every element of this new space \(r \)-dimensional flat chain.

![Figure 5: the Koch curve with \(A_1, A_2, \cdots, A_6 \)](image)

Theorem 1 The koch curve is a flat chain.

Proof. Suppose the Koch curve \((\subset \mathbb{R}^2)\) is generated by \(\{S_i\}_{i=1}^4 \) with \((0, 0)\) and \((1, 0)\) being fixed points of \(S_1 \) and \(S_4 \) respectively [1]. In fact,
\[
S_1(x, y) = (x, y)/3, S_4(x, y) = (x, y)/3 + (2, 0)/3
\]

IJNS email for contribution: editor@nonlinearscience.org.uk
and

\[S_1(1,0) = S_2(0,0) = (1/3,0), \]
\[S_2(1,0) = S_3(0,0) = (1/2, \sqrt{3}/6), \]
\[S_3(1,0) = S_4(0,0) = (2/3,0). \]

Let \(K = [0,1] \times \{0\} \). Equipping \(K \) with a direction from \((0,0)\) and \((1,0)\), we consider \(K \) as a flat chain. Let \(\Omega_n = \{1, 2, 3, 4\}^n \) denote all the word of length \(n \), and

\[A_n = \Sigma_{i_1 \cdots i_n \in \Omega_n} S_{i_1 \cdots i_n}(K). \]

Then for any \(n, m \) with \(m > n \), \(A_n - A_m \) is a boundary of some 2-dimensional chain, with its area less than \(4^n(1/3)^{2n}(\sqrt{3}/6) = (4/9)^n(\sqrt{3}/6) \), i.e., for any \(n, m \) with \(m > n \),

\[|A_n - A_m| \leq (4/9)^n(\sqrt{3}/6) \to 0 \text{ as } n \to \infty, \]

which implies \(\{A_n\}_n \), with its limit being a flat chain. □

2 Flat Cochain

Making completion of the linear space of \(r \)-dimensional polyhedrons, we get a space \(\Pi_r \) of all the \(r \)-dimensional flat chain with norm \(| \cdot |\). A bounded linear operator \(X \) on \(\Pi_r \) is said to be a flat cochain \([7]\) with is norm defined by

\[|X| = \sup_{|A|=1} |X \cdot A|. \]

We can define \(dX \) such that for any \((r+1)\)-dimensional flat chain \(D \),

\[dX \cdot D = X \cdot (\partial D). \]

Then we have the following remarks:

(1) For any polyhedron \(T \), \(|\partial T| \leq |T| \)

 In fact, let \(T = A + \partial B \) such that \(M(A) + M(B) < |T| - \varepsilon \), then

 \[\partial T = \partial A. \]

 Therefore, \(|\partial T| \leq M(A) \leq M(A) + M(B) < |T| - \varepsilon \). Letting \(\varepsilon \to 0 \), we get \(|\partial T| \leq |T| \).

(2) Boundary operator \(\partial \) can be defined on all the flat chains as follows:

 Let \(S \) be a flat chain and polyhedrons \(A_1, A_2, \cdots, A_k, \cdots \) approaches to \(S \) under the flat norm, i.e.,

 \[|S - A_k| \to 0 \text{ as } k \to \infty, \ |A_{k_1} - A_{k_2}| \to 0 \text{ as } k_1, k_2 \to \infty. \]

 Thus

 \[|\partial A_{k_1} - \partial A_{k_2}| = |\partial (A_{k_1} - A_{k_2})| \leq |A_{k_1} - A_{k_2}| \to 0, \]

 denoted by \(\partial S \) the limit of these Cauchy sequence \(\{\partial A_k\}_k \). Extending the above inequality for all flat chains, we have

 \[|\partial T| \leq |T|. \]

(3) \(|dX| \leq |X|\), that means \(dX \) is a flat cochain.

Since \(|dX \cdot A| = |X \cdot \partial A| \leq |X| \cdot |\partial A| \leq |X| \cdot |A|\), \(|dX| = \sup_{|A|=1} |dX \cdot A| \leq \sup_{|A|=1} |X| \cdot |A| = |X|\),

\[|dX| \leq |X|. \]

For any cochain \(X \), since \(|A| \leq M(A), |B| \leq M(B)\), we have

\[|X \cdot A| \leq |X| \cdot |A| \leq |X| \cdot M(A) \]
\[|dX \cdot B| \leq |dX| \cdot |B| \leq |X| \cdot M(B) \]

Lipschitz form and flat cochain

IJNS homepage: http://www.nonlinearscience.org.uk/
Lemma 1 Suppose $U \subset \mathbb{R}^n$ is open, and $K \subset U$ is compact. Let $f : U \rightarrow \mathbb{R}$ be a Lipschitz function. Assume that for any $x, y \in U$,

$$|f(x) - f(y)| \leq C|x - y|$$

where C is a constant, then for any $\varepsilon > 0$, there is a C^∞ function φ such that

$$\sup_{x \in K} |f(x) - \varphi(x)| < \varepsilon,$$

and for any $x, y \in K$,

$$|\varphi(x) - \varphi(y)| \leq C|x - y|,$$

Proof: Take a non-negative function h supported in the unit ball such that $\int h = 1$. Let $h_\rho = \rho^{-n}h(\frac{x}{\rho})$ and $\varphi_\rho = h_\rho * f$, that is $\varphi_\rho(x) = \int_{B(0, \rho)} h_\rho(z)f(x - z)dz$. Here $\partial^n \varphi_\rho = \partial^n h_\rho * f$, which implies φ_ρ is a C^∞ function.

$$|f(x) - \varphi_\rho(x)| = |\int_{B(0, \rho)} h_\rho(z)[f(x) - f(x - z)]dz|$$

$$\leq \left|\int_{B(0, \rho)} h_\rho(z)\right| \cdot \sup_{|z| < \rho} |f(x) - f(x - z)| \leq C \rho,$$

and

$$|\varphi_\rho(x_1) - \varphi_\rho(x_2)| = |\int_{B(0, \rho)} h_\rho(z)[f(x_1 - z) - f(x_2 - z)]dz| \leq C|x_1 - x_2|.$$

□

Theorem 2 If $\omega = \sum_{i=1}^n f_i dx_i$ with f_i being Lipschitzian, then ω is a flat cochain.

proof. It suffices to show there exists a constant N such that for any $(r + 1)$-dimensional simplex σ^{r+1},

$$|\int_{\partial \sigma^{r+1}} \omega| \leq N \text{Vol}(\sigma^{r+1}).$$

By the above lemma, we select differential form ω' such that

$$||\omega - \omega'||_K < \varepsilon,$$

and $\sup ||d\omega'||_K < M$, where M only depends on ω.

For this $(r + 1)$-simplex contained in the compact set K, Stokes’s formula holds and thus

$$|\int_{\partial \sigma^{r+1}} \omega'| = |\int_{\sigma^{r+1}} d\omega'| \leq M \cdot \text{Vol}(\sigma^{r+1}).$$

Since $||\omega - \omega'||_K < \varepsilon$, $|\int_{\partial \sigma^{r+1}} \omega'| \rightarrow |\int_{\partial \sigma^{r+1}} \omega|$. As $\varepsilon \rightarrow 0$, the above inequality implies

$$|\int_{\partial \sigma^{r+1}} \omega| \leq M \cdot \text{Vol}(\sigma^{r+1}).$$

This completes the proof of theorem. □

3 Conclusion

Since the Koch curve γ is a 1-dimensional flat chain, and any 1-dimensional Lipschitz form $\omega = f dx + g dy$ is a flat cochain, and thus $\int_{\gamma} \omega$ is well defined.

IJNS email for contribution: editor@nonlinearscience.org.uk
Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 10301029, 10671180).

References

