Smoothness Analysis of Coalescence Hidden Variable Fractal Interpolation Functions

A. K. B. Chand 1, G. P. Kapoor 2

1 Department of Mathematics, Indian Institute of Technology Kanpur,
Currently at Departamento de Matemática Aplicada- Centro Politécnico Superior de Ingenieros,
Universidad de Zaragoza. C/ Mariá de Luna, 3, 50018, Zaragoza, España.
2 Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur-208016, India.

(Received 30 September 2006, accepted 27 November 2006)

Abstract. The smoothness analysis of coalescence hidden variable fractal interpolation functions (CHFIFs) has been carried out in the present paper by using the operator approximation technique. It is found that the deterministic construction of functions having order of modulus continuity \(O(|t|^{\delta} (\log |t|)^m))\) is possible through CHFIFs, where \(m\) is a non-negative integer and \(0 < \delta \leq 1\). The bounds of fractal dimension of CHFIFs are also obtained in critical cases.

Keywords: iterated function systems; attractor; fractal interpolation functions; hidden variable; self-affine; non-self-affine; operator approximation; smoothness analysis.

AMS Classification: 26A80, 65D05, 37C25, 41A35, 26A16.

1 Introduction

The fractal curves are often observed to occur in various disciplines such as natural sciences [1–3], engineering applications [4–7], economics [8] etc. These curves are constructed deterministically [9, 10] by using fractal interpolating function (FIF) from suitable choice of iterated function system (IFS). FIFs are generally self-affine in nature and the Hausdorff-Besicovitch dimensions of their graphs are non-integers. To approximate non-self-affine patterns, hidden variable FIFs (HFIFs) are constructed in [10–12] by projecting vector valued FIF corresponding to a generalized interpolation data. However, in practical applications of FIF, the interpolation data might be generated simultaneously from self-affine or non-self-affine functions [13], needing the construction of hidden variable bivariate fractal interpolation surfaces [14] by using constrained free variables. The concept of coalescence hidden variable FIF (CHFIF) that is self-affine or non-self-affine depending on the parameters of defining IFS is introduced in [15, 16].

Since FIFs are continuous but generally nowhere differentiable functions, their analysis can not be done satisfactorily by restricting to classical analysis tools. For the applications of FIF theory, in general, an expansion of the FIF in terms of a suitable function system is usually considered. Barnsley and Harrington [17] used shifted composition to express affine FIFs and computed their fractal dimensions. However, a practical implementation of this representation is somewhat difficult. Zhen [18] proposed another series representation of self-affine FIF through a new function \(\psi_\sigma K_\omega\) to study the Hölder property of FIF. Since, the function \(\psi_\sigma K_\omega\) has too many points of discontinuity, it is slightly tedious to analyze it in applications. Zhen and Gang [19] expanded equidistant FIF on \([0, 1]\) by using Haar-wavelet function system and obtained their global Hölder property, when the number of interpolation points is \(N = 2^p + 1\), \(p\) being a definite positive integer. Gang [20] employed the technique of operator approximation to characterize the Hölder continuity

1Corresponding author. Tel: 34-976-761983, Fax: 34-976-761886. E-mail address: akbchand@gmail.com

Copyright © World Scientific Publishing Company

International Journal of Nonlinear Science
of self-affine FIFs on a general set of nodes on \([0, 1]\). Bedford [21] obtained the Hölder exponent \(h\) of a self-affine fractal function that has non-linear scaling, using code space of \(n\) symbols associated with the IFS. He also showed the existence of a larger Hölder exponent \(h\) defined at almost every point with respect to Lebesgue measure. The Hölder exponent needed in smoothness analysis of HIFIFs is not yet studied due to interdependence of the components in the construction of HIFIFs.

In the present paper, the approximation of a CHFIF is obtained through an operator found with integral averages on each subinterval of the CHFIF. Using this approximation, the Hölder exponent of the non-self-affine functions arising from IFS is found for the first time. The bounds of Fractal dimension of the CHFIF in critical cases are obtained. The organization of the paper is as follows: In Section 2, we give basic theory of CHFIFs. The Hölder continuity of CHFIFs is investigated in Section 3 by using the operator approximation technique. The bounds on fractal dimension of CHFIFs in critical cases are obtained in Section 4.

2 Theory of CHFIF

Let the interpolation data be \(\{(x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2, \ldots, N\}\), where \(-\infty < x_0 < x_1 < \cdots < x_N < \infty\). For constructing an interpolation function \(f_1 : [x_0, x_N] \rightarrow \mathbb{R}\) such that \(f_1(x_i) = y_i\) for all \(i = 0, 1, 2, \ldots, N\), consider a generalized set of data \(\{(x_i, y_i, z_i) \in \mathbb{R}^3 : i = 0, 1, 2, \ldots, N\}\), where \(z_i, i = 0, 1, 2, \ldots, N\) are real parameters. Denote \(I = [x_0, x_N] = [x_{i-1}, x_i], g_i(Min y_i, \hat{y}_i, h_i = M_i z_i, \tilde{h}_i = Max z_i)\) and \(K = I \times D\), where \(D = J_1 \times J_2, J_1, J_2\) are suitable compact sets in \(\mathbb{R}\) such that \([\tilde{g}_i, \tilde{g}_i] \times [\tilde{h}_i, \tilde{h}_i] \subset D\). Let \(L_i : I \rightarrow I_i\) be a contractive homeomorphism and \(F_i : K \rightarrow D\) be a continuous vector valued function such that for \(i = 1, 2, \ldots, N\),

\[
\begin{aligned}
L_i(x_0) &= x_{i-1}, L_i(x_N) = x_i, \\
F_i(x_0, y_0, z_0) &= (y_{i-1}, z_{i-1}), F_i(x_N, y_N, z_N) = (y_i, z_i),
\end{aligned}
\]

(2.1)

and for \((x, y, z), (x^*, y, z^*), (x, y^*, z^*) \in K\), for all \(i = 1, 2, \ldots, N\),

\[
\begin{aligned}
d(F_i(x, y, z), F_i(x^*, y, z)) \leq c |x - x^*|, \\
d(F_i(x, y, z), F_i(x, y^*, z^*)) \leq s d_E((y, z), (y^*, z^*))
\end{aligned}
\]

(2.2)

where \(c\) and \(s\) are positive constants with \(0 \leq s < 1\), \(d\) is the sup. metric on \(K\), and \(d_E\) is the Euclidean metric on \(\mathbb{R}^2\). In the construction of CHFIF, choose \(L_i(x) = a_i x + b_i\) and \(F_i(x, y, z) = A_i(y, z, z)^T + (p_i(x), q_i(x))^T\), where \(A_i\) is an upper triangular matrix \(\begin{pmatrix} \alpha_i & \beta_i \\ 0 & \gamma_i \end{pmatrix}\) and \(p_i(x), q_i(x)\) are continuous functions having two free parameters. We take \(\alpha_i\) as free variable with \(|\alpha_i| = 1\) and \(\beta_i, \gamma_i\) as constrained free variable with respect to \(\gamma_i\) such that \(|\beta_i| + |\gamma_i| < 1\). The generalized IFS that is needed for construction of CHFIF corresponding to the data \(\{(x_i, y_i, z_i) : i = 0, 1, \ldots, N\}\) is defined as

\[
(\mathbb{R}^3, \omega_i(x, y, z) = (L_i(x), F_i(x, y, z)), i = 1, 2, \ldots, N).
\]

(2.3)

It is known [11] that the IFS defined in (2.3) associated with the data \(\{(x_i, y_i, z_i) : i = 0, 1, \ldots, N\}\) is hyperbolic with respect to a metric \(d^*\) on \(\mathbb{R}^3\) equivalent to the Euclidean metric. In particular, there exists a unique nonempty compact set \(G \subset \mathbb{R}^3\) such that \(G = \bigcup_{i=1}^{N} \omega_i(G)\). The following proposition gives the existence of a unique vector valued function \(f\) that interpolates the generalized interpolation data and also establishes that the graph of \(f\) equals the attractor \(G\) of the generalized IFS:

Proposition 2.1. [11] The attractor \(G\) of the IFS defined in (2.3) is the graph of the continuous vector valued function \(f : I \rightarrow D\) such that \(f(x_i) = (y_i, z_i)\) for all \(i = 1, 2, \ldots, N\), i.e. \(G = \{(x, y, z) : x \in I\} = \{(y(x), z(x))\}\). The vector valued function \(f\) is fixed point of Read-Bajraktarević operator \(T\) that is defined on the metric space \((\mathcal{F}, \rho)\), where \(\mathcal{F} = \{g : I \rightarrow D|\rho\text{ is continuous, } g(x_0) = (y_0, z_0), g(x_N) = (y_N, z_N)\}\), for
\(g, h \in \mathcal{F}, \rho(g, h) = \sup_{x \in I} \|g(x) - h(x)\|, \) and \(\|\| \) denotes the Euclidean norm on \(\mathbb{R}^2 \). Since \(f \) is the fixed point of \(T \), we have for \(x \in I \),

\[
f(x) = (Tf)(x) = F_i(L_i^{-1}(x), y(L_i^{-1}(x)), z(L_i^{-1}(x))), \quad i = 1, 2, \ldots, N.
\] (2.4)

Let the vector valued function \(f : I \to D \) be written as \(f(x) = (f_1(x), f_2(x)) \). The required CHFIF is now defined as follows:

Definition 2.1. Let \(\{(x, f_1(x)) : x \in I\} \) be the projection of the attractor \(G \) on \(\mathbb{R}^2 \). Then, the function \(f_1(x) \) is called coalescence hidden variable FIF (CHFIF) for the given interpolation data \(\{(x_i, y_i) | i = 0, 1, \ldots, N\} \).

The following definition is needed to characterize CHFIF:

Definition 2.2. Let \(S \) be a set of points \(x = (x_1, x_2, \ldots, x_E) \) in an Euclidean space of dimension \(E \) and \(rS = \{(r_1x_1, r_2x_2, \ldots, r_E) : r = (r_1, r_2, \ldots, r_E), r_n > 0 \text{ and } x \in S\} \). The set \(S \) is called self-affine, if \(S \) is the union of \(N \) distinct subsets, each identical with \(rS \) up to translation and rotation. If \(S \) is not self-affine, then it is called non-self-affine. If \(r_1 = r_2 = \cdots = r_E \), then a self-affine set is called self-similar and a non-self-affine set is called non-self-similar.

Remark 2.1. Although, the attractor \(G \) of the IFS defined in (2.3) is a union of affine transformations of itself, the projection of the attractor is not always union of affine transformations of itself. Hence, CHFIFs are generally non-self-affine in nature. By choosing \(y_i = z_i \) and \(\alpha_i + \beta_i = \gamma_i \), CHFIF \(f_1(x) \) coincides with a self-affine fractal function \(f_2(x) \) for the same interpolation data. Hence, the CHFIF is self-affine or self-similar in this case even though the class of CHFIFs is a subclass of the class of HIFFs. These CHFIFs can be used to approximate the random steps of Gaussian, increments of the fractional Brownian function and wave-height functions [2].

3 Smoothness analysis of CHFIF

In this section, the smoothness of CHFIFs is studied by using their operator approximations. The Hölder exponent of CHFIFs is calculated in the proof of our main Theorems 3.1-3.3.

We take the interpolation data on x-axis as \(0 = x_0 < x_1 < \cdots < x_N = 1 \). Let the function \(F_i \) of the IFS (2.3) be of the form

\[
F_i(x, y, z) = (\alpha_i y + \beta_i z + p_i(x), \gamma_i z + q_i(x)),
\] (3.1)

where \(|\alpha_i| < 1, |\beta_i| + |\gamma_i| < 1, p_i \in Lip\lambda_i (0 < \lambda_i \leq 1), \) and \(q_i \in Lip\mu_i (0 < \mu_i \leq 1) \). From (2.4) and (3.1), for \(x \in I_i \), the fixed point \(f \) of \(T \) satisfies

\[
(Tf)(x) = F_i(L_i^{-1}(x), f_1(L_i^{-1}(x)), f_2(L_i^{-1}(x)))
\]

\[
\Rightarrow f(x) = F_i(L_i^{-1}(x), f_1(L_i^{-1}(x)), f_2(L_i^{-1}(x)))
\]

\[
\Rightarrow f_1(x, f_2(x)) = (\alpha_i f_1(L_i^{-1}(x)) + \beta_i f_2(L_i^{-1}(x)) + p_i(L_i^{-1}(x)), \gamma_i f_2(L_i^{-1}(x)) + q_i(L_i^{-1}(x)).
\]

Following Definition 2.1, the CHFIF in this case can be written as

\[
f_1(L_i(x)) = \alpha_i f_1(x) + \beta_i f_2(x) + p_i(x), \quad x \in I
\] (3.2)

where the self-affine fractal function \(f_2(x) \) is given by

\[
f_2(L_i(x)) = \gamma_i f_2(x) + q_i(x), \quad x \in I.
\] (3.3)

Let \(I_{r_1} = [x_{r_1-1}, x_{r_1}] = L_{r_1}(I) \). Then, \(I_{r_1} = L_{r_1}(0) + |I_{r_1}| \), where \(|x_{r_1} - x_{r_1-1}| \) is the length of \(I_{r_1} \), \(1 \leq r_1 \leq N \). Similarly, \(I_{r_{12}} = L_{r_2}(0) + |I_{r_2}| L_{r_1}(I) = L_{r_2} \circ L_{r_1}(I) = L_{r_{12}}(I) \), where \(|I_{r_{12}}| = |I_{r_1}| |I_{r_2}|, \) \(1 \leq r_1, r_2 \leq N \). In general,

\[
I_{r_{12} \cdots r_m} = L_{r_m}(0) + |I_{r_m}| I_{r_{12} \cdots r_{m-1}} = L_{r_m} \circ L_{r_{m-1}} \cdots \circ L_{r_1}(I) = L_{r_{12} \cdots r_m},
\] (3.4)

where \(|I_{r_{12} \cdots r_m}| = |I_{r_1}| |I_{r_2}| \cdots |I_{r_m}| \) and \(1 \leq r_1, r_2, \ldots, r_m \leq N \).

We need the following lemmas for our main results:

IINS homepage: http://www.nonlinearscience.org.uk/
Lemma 3.1. Let f_1 be defined as in (3.2) and $b_{r_1r_2 \ldots r_m} = \int_{I_{r_1r_2 \ldots r_m}} f_1(x) \, dx$. Then,

$$b_{r_1r_2 \ldots r_m} = \sum_{k=1}^{m} \prod_{j=k+1}^{m} \left(|I_{r_j}| \alpha_{r_j} \right) |I_{r_k}| \left(\int_{I_{r_1r_2 \ldots r_{k-1}}} p_{r_k}(\xi) \, d\xi + \beta_{r_k} \alpha_{r_1r_2 \ldots r_{k-1}} \right) + \prod_{j=1}^{m} \left(|I_{r_j}| \alpha_{r_j} \right) \int_{0}^{1} f_1(\xi) \, d\xi,$$

(3.5)

where $I_{r_0} = I$ and $a_{r_1r_2 \ldots r_m} = \int_{I_{r_1r_2 \ldots r_m}} f_2(x) \, dx$.

Proof. Since, $b_{r_1r_2 \ldots r_m} = \int_{I_{r_m}(0)+|I_{r_1r_2 \ldots r_{m-1}}} f_1(x) \, dx$, a change of the variable x by $x = L_{r_{m}}(x) + |I_{r_m}| \xi$ gives

$$b_{r_1r_2 \ldots r_m} = \int_{I_{r_1r_2 \ldots r_m}} f_1(L_{r_{m}}(x) + |I_{r_m}| \xi) \, d\xi = |I_{r_m}| \int_{I_{r_1r_2 \ldots r_m}} (\alpha_{r_m} f_1(\xi) + \beta_{r_m} f_2(\xi) + p_{r_m}(\xi)) \, d\xi$$

$$= |I_{r_m}| \int_{I_{r_1r_2 \ldots r_m}} p_{r_m}(\xi) \, d\xi + \beta_{r_m} f_2(\xi) + \alpha_{r_m} \int_{I_{r_1r_2 \ldots r_{m-1}}} f_1(\xi) \, d\xi$$

$$= |I_{r_m}| \left[\int_{I_{r_1r_2 \ldots r_{m-1}}} p_{r_m}(\xi) \, d\xi + \beta_{r_m} a_{r_1r_2 \ldots r_{m-1}} \right] + |I_{r_m}| \left| \alpha_{r_m} \right| \int_{I_{r_1r_2 \ldots r_{m-2}}} p_{r_{m-1}}(\xi) \, d\xi$$

$$+ \beta_{r_{m-1}} a_{r_1r_2 \ldots r_{m-2}} + \alpha_{r_{m-1}} \int_{I_{r_1r_2 \ldots r_{m-2}}} f_1(\xi) \, d\xi$$

$$= \sum_{k=1}^{m} \prod_{j=k+1}^{m} \left(|I_{r_j}| \alpha_{r_j} \right) |I_{r_k}| \left(\int_{I_{r_1r_2 \ldots r_{k-1}}} p_{r_k}(\xi) \, d\xi + \beta_{r_k} a_{r_1r_2 \ldots r_{k-1}} \right) + \prod_{j=1}^{m} \left(|I_{r_j}| \alpha_{r_j} \right) \int_{0}^{1} f_1(\xi) \, d\xi.$$

Since $f_1(x)$ is continuous, the integral average $b_{r_1r_2 \ldots r_m}/|I_{r_1r_2 \ldots r_m}|$ can be taken as a good approximation of $f_1(x)$ in the subinterval $I_{r_1r_2 \ldots r_m}$, when m is very large, leading to the following definition of the approximating operator Q_m on the interval I:

Definition 3.1. Let

$$Q_m(f_1, x) = \sum_{r_1, r_2, \ldots, r_m=1}^{N} \chi_{I_{r_1r_2 \ldots r_m}}(x) \frac{b_{r_1r_2 \ldots r_m}}{|I_{r_1r_2 \ldots r_m}|},$$

(3.6)

where $I_{r_1r_2 \ldots r_m}$ is defined by (3.4), $b_{r_1r_2 \ldots r_m}$ is defined by (3.5), and

$$\chi_{I_{r_1r_2 \ldots r_m}}(x) = \begin{cases} 1 & x \in I_{r_1r_2 \ldots r_m}, \\ 0 & x \in I \setminus I_{r_1r_2 \ldots r_m}. \end{cases}$$

Lemma 3.2. As $m \to \infty$, the operator $Q_m(f_1, x)$, given by (3.6), converges to $f_1(x)$ uniformly on I.

Proof. The proof follows immediately by using Mean Value Theorem.

The following notations are used in smoothness analysis: $\alpha = \max\{|\alpha_i| : i = 1, 2, \ldots, N\}$, $\beta = \max\{|\beta_i| : i = 1, 2, \ldots, N\}$, $\gamma = \max\{|\gamma_i| : i = 1, 2, \ldots, N\}$, $\lambda = \min\{\lambda_i : i = 1, 2, \ldots, N\}$, $\Omega = \max\{|\Omega_i| : i = 1, 2, \ldots, N\}$, $\delta = \min\{|\delta_i| : i = 1, 2, \ldots, N\}$, $\theta = \min\{|\theta_i| : i = 1, 2, \ldots, N\}$, $\mu = \min\{|\mu_i| : i = 1, 2, \ldots, N\}$, $\gamma = \max\{\gamma_i : i = 1, 2, \ldots, N\}$, $\Gamma = \max\{|\Gamma_i| : i = 1, 2, \ldots, N\}$, $\Theta = \max\{|\Theta_i| : i = 1, 2, \ldots, N\}$, $|I_{\min}| = \max\{|I_i| : i = 1, 2, \ldots, N\}$, $|I_{\max}| = \max\{|I_i| : i = 1, 2, \ldots, N\}$, Modulus of continuity of $f_1(x)$ as $\omega(f_1, t) = \sup_{|h| \leq t} \sup_{x} |f_1(x+h) - f_1(x)|$, and $\delta = \{f : |f(x) - f(y)| \leq M|x - y|^\delta, M > 0\}$.

Using the above lemmas and notations, we now prove our smoothness results according to the magnitude of θ.

Theorem 3.1. Let $f_1(x)$ be the CHFIF defined by (3.2) with $\Theta < 1$. Then, (a) for $\Omega \neq 1$ and $\Gamma \neq 1$, $f_1 \in Lip \delta (b)$ for $\Omega = 1$ or $\Gamma = 1$, $\omega(f_1, t) = \bigcirc(t^\delta \log |t|)$, for suitable values of $\delta \in (0, 1]$.

IJNS email for contribution: editor@nonlinearscience.org.uk
Proof. In order to calculate the Hölder exponent of CHFIF f_1, a suitable upper bound on the difference between $f_1(x)$ and $f_1(\bar{x})$ for $x, \bar{x} \in [0, 1]$ is needed to be found. In view of Lemma 3.2, it is sufficient to find an upper bound on the difference between functional values of their operator approximations $Q_m(f_1, x)$ and $Q_m(f_1, \bar{x})$.

For $0 \leq x < \bar{x} \leq 1$, there exists a least m such that I_{r_1+1, \ldots, r_m} is the largest interval contained in $[x, \bar{x}]$. So, either x or $\bar{x} \in I_{r_1+1, \ldots, r_m}$. Assume that, $x \in I_{r_1+1, \ldots, r_m}$, $s \leq r_1 - 1$, $\bar{x} \in I_{t_1+1, \ldots, r_m}$, $t \geq r_1 + 1$, or $\bar{x} \in I_{r_1+1, \ldots, r_m}$, $1 \leq t' \leq N$. Let $n, m \in N$ and $n > m$. Taking further refinement of the above two intervals, we assume that $x \in I_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_m}$, $\bar{x} \in I_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_m}$. It now follows that

$$Q_n(f_1, x) = \frac{1}{|I_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_m}|} \int_{I_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_m}} f_1(\xi) d\xi$$

$$= \frac{1}{|I_{u_1}| |I_{u_2}| \ldots |I_{u_{n-m}}| |I_{r_2}| \ldots |I_{r_m}|} \left(\sum_{k=3}^{m} \prod_{j=k+1}^{m} (|I_{r_j}| |\alpha_{r_j}|) |I_{r_k}| \right)$$

$$\left(\int_{I_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_k-1}} p_{r_k}(\xi) d\xi + \beta_{r_k} a_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_k-1} \right) + \prod_{j=3}^{m} (|I_{r_j}| |\alpha_{r_j}|) \int_{I_{u_1, \ldots, u_{n-m}, m+2}} f_1(\xi) d\xi$$

Similarly, the expression for $Q_n(f_1, \bar{x})$ can be written as

$$Q_n(f_1, \bar{x}) = \frac{1}{|I_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_m}|} \left(\int_{I_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_k-1}} p_{r_k}(\xi) d\xi + \beta_{r_k} a_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_k-1} \right)$$

$$+ \prod_{j=3}^{m} (|I_{r_j}| |\alpha_{r_j}|) \int_{I_{u_1, \ldots, u_{n-m}, tr_2'}} f_1(\xi) d\xi.$$

To estimate $|Q_n(f_1, x) - Q_n(f_1, \bar{x})|$, observe that

$$Q_n(f_1, x) - Q_n(f_1, \bar{x})$$

$$= \sum_{k=3}^{m} \prod_{j=k+1} a_{r_j} \left(\int_{I_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_k-1}} p_{r_k}(\xi) d\xi - \int_{I_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_k-1}} p_{r_k}(\xi) d\xi \right)$$

$$+ \prod_{j=3}^{m} (|I_{r_j}| |\alpha_{r_j}|) \left(\int_{I_{u_1, \ldots, u_{n-m}, tr_2'}} f_1(\xi) d\xi - \int_{I_{u_1, \ldots, u_{n-m}, m+2}} f_1(\xi) d\xi \right)$$

$$+ \sum_{k=3}^{m} \prod_{j=k+1} \beta_{r_j} \left(a_{u_1, \ldots, u_{n-m}, m+2, \ldots, r_k-1} - a_{u_1, \ldots, u_{n-m}, tr_2', \ldots, r_k-1} \right).$$

(3.7)

From the approximation by Gang [20],

$$a_{r_1+1, \ldots, r_m} = \int_{I_{r_1+1, \ldots, r_m}} f_2(\xi) d\xi$$

$$= \sum_{k=1}^{m} \prod_{j=k+1} (|I_{r_j}| |\gamma_{r_j}|) |I_{r_k}| \int_{I_{r_1+1, \ldots, r_k-1}} q_{r_k}(\xi) d\xi + \prod_{j=1}^{m} (|I_{r_j}| |\gamma_{r_j}|) \int_{I_{r_1}}^{1} f_2(\xi) d\xi.$$
it follows that
\[
\frac{a_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}}{|I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}|} = \frac{1}{|I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}|} \sum_{k=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} \hat{\gamma}_{r_i} | |I_{r_i} | \right)
\int_{I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}} f_2(\xi) d\xi
\]

\[
= \frac{1}{|I_{u_1 \ldots u_{n-m} s_{r_2}}| |I_{r_3} | \ldots |I_{r_{k-1}} |} \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right)
\int_{I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}} f_2(\xi) d\xi
\]

\[
= \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) \frac{1}{|I_{u_1 \ldots u_{n-m} s_{r_2}}| |I_{r_3} | \ldots |I_{r_{k-1}} |} \int_{I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}} q_{r_i}(\xi) d\xi
\]

\[
+ \left(\prod_{i=3}^{k-1} |I_{r_i} | \right) \frac{1}{|I_{u_1 \ldots u_{n-m} s_{r_2}}| |I_{r_3} | \ldots |I_{r_{k-1}} |} \int_{I_{u_1 \ldots u_{n-m} s_{r_2}}} f_2(\xi) d\xi.
\]

Similarly,
\[
\frac{a_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}}{|I_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}|} = \frac{1}{|I_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}|} \sum_{k=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) \int_{I_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}} q_{r_i}(\xi) d\xi
\]

\[
+ \left(\prod_{i=3}^{k-1} |I_{r_i} | \right) \frac{1}{|I_{u_1 \ldots u_{n-m} t_{r_2}}| |I_{r_3} | \ldots |I_{r_{k-1}} |} \int_{I_{u_1 \ldots u_{n-m} t_{r_2}}} f_2(\xi) d\xi.
\]

Consequently,
\[
\left| \frac{a_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}}{|I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}|} - \frac{a_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}}{|I_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}|} \right|
\]

\[
= \left| \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) \int_{I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}} q_{r_i}(\xi) d\xi
\right|
\]

\[
= \left| \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) \int_{I_{u_1 \ldots u_{n-m} t_{r_2} \ldots r_{k-1}}} q_{r_i}(\xi) d\xi
\right|
\]

\[
\leq \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) \int_{I_{u_1 \ldots u_{n-m} s_{r_2} \ldots r_{k-1}}} q_{r_i}(\xi) - q_{r_i}(x_{r_3 \ldots r_{k-1}}) d\xi
\]

\[
\leq \sum_{i=3}^{k-1} \prod_{i=1+1}^{k-1} \left(|I_{r_i} | |I_{r_i} | \right) M_1 |I_{r_3 \ldots r_{k-1}}|^{|\mu_r|} + M_2 \left(\prod_{i=3}^{k-1} |I_{r_i} | \right)
\]

where \(M_1\) is Lipschitz bound and \(M_2 = 2 \| f_2 \|_\infty\). Using (3.8) in (3.7),
\[
|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq \sum_{k=3}^{m} \prod_{j=3}^{k-1} (|\alpha_{r_j} | |I_{r_j} | \right)
\]

\[
= \sum_{k=3}^{m} \prod_{j=3}^{k-1} (|\alpha_{r_j} | |I_{r_j} | \right)
\]

\[
+ \left| \sum_{k=3}^{m} \prod_{j=3}^{k-1} (|\alpha_{r_j} | |I_{r_j} | \right)
\]

\[
+ \left(\prod_{i=3}^{k-1} |I_{r_i} | \right) M_1 |I_{r_3 \ldots r_{k-1}}|^{|\mu_r|} + M_2 \left(\prod_{i=3}^{k-1} |I_{r_i} | \right)
\]

\[
IJNS\ email\ for\ contribution:\ editor@nonlinearscience.org.uk
\]
Lemma 3.2 gives

\[\tau \leq \sum_{k=3}^{m} \left(\prod_{j=k+1}^{m} |\alpha_{r_j}| \right) M_3 \left| I_{r_3 \ldots r_{k-1}} \right|^{\lambda r_k} + M_4 \left(\prod_{j=3}^{m} |\alpha_{r_j}| \right) + \sum_{k=3}^{m} \left(\prod_{j=k+1}^{m} |\alpha_{r_j}| \right) |\beta_{r_k}|. \]

where \(M_3 \) is Lipschitz bound, and \(M_4 = 2 \| f_1 \|_{\infty} \). From the above inequality it follows that

\[|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_3 \sum_{k=3}^{m} \left(\prod_{j=k+1}^{m} |\alpha_{r_j}| \right) \sum_{i=1}^{m} \prod_{j=i+1}^{m} |I_{r_j}|^{\lambda} + M_4 \left(\prod_{j=3}^{m} |\alpha_{r_j}| \right) \sum_{k=3}^{m} |\beta_{r_k}| \prod_{j=k+1}^{m} |\alpha_{r_j}|. \]

The above inequality gives

\[|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 \left| x - \bar{x} \right|^{\lambda} \sum_{k=2}^{m} \Omega^m - k + M_6 |x - \bar{x}|^{\mu} \sum_{k=2}^{m} \Theta^m - k \sum_{l=3}^{k-1} \Gamma^l. \]

(3.9)

Since \(\Theta < 1 \), (3.9) further reduces to

\[|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 \left| x - \bar{x} \right|^{\lambda} \sum_{k=2}^{m} \Omega^m - k + M_6 \frac{1}{1 - \Theta} |x - \bar{x}|^{\mu} \sum_{k=1}^{m-3} \Gamma^k. \]

(3.10)

Case (a). \(\Omega \neq 1 \) and \(\Gamma \neq 1 \): The desired Hölder exponents are found individually for each of the following subcases:

I. \(\Omega < 1 \) and \(\Gamma < 1 \):

\[|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_7 \left| x - \bar{x} \right|^{\lambda} \frac{M_6 |x - \bar{x}|^{\mu}}{1 - \Theta} \leq M_7 |x - \bar{x}|^{\delta_1}, \]

where \(M_7 = \max \{ M_3, M_4 \} \) and \(\delta_1 = \min (\lambda, \mu) \). Thus, as \(n \to \infty \), the above inequality together with Lemma 3.2 gives \(f_1 \in Lip^\delta \) with \(\delta = \delta_1 \).

II. \(\Omega > 1 \) and \(\Gamma > 1 \):

\[|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 \left| x - \bar{x} \right|^{\lambda} m \Omega^m + M_6 \frac{1}{1 - \Theta} \left| x - \bar{x} \right|^{\mu} m \Gamma^m. \]

(3.11)

Suppose \(\tau_1 > 0 \) such that \(\left| x - \bar{x} \right|^{\mu} m \Omega^m \leq \left| x - \bar{x} \right|^{\tau_1} \). Then,

\[\tau_1 \leq \lambda + \frac{m \log \Omega}{\log |x - \bar{x}|}. \]

(3.12)

Further, \(|I_{r_1, \ldots, r_m}| \leq |x - \bar{x}| < 1 \Rightarrow |I_{min}|^{m} \leq |x - \bar{x}| \Rightarrow \frac{1}{m \log |I_{min}|} \geq \frac{1}{\log |x - \bar{x}|}. \)

Also, \(\Omega \leq \frac{\alpha}{|I_{min}|} \Rightarrow \log \Omega \leq \log \alpha - \lambda \log |I_{min}|. \) Therefore, by (3.12), \(\tau_1 \leq \frac{\log \alpha}{\log |I_{min}|} \).

IINS homepage: http://www.nonlinearscience.org.uk/
Similarly, if $\tau_2 > 0$ is such that $|x - \bar{x}|^\mu \leq |x - \bar{x}|^{\tau_2}$, then $\tau_2 \leq \frac{\log \gamma}{\log |t|_{\text{min}}}$. Let $\tau_3 = \min\{\frac{\log \alpha}{\log |t|_{\text{min}}}, \frac{\log \gamma}{\log |t|_{\text{min}}}\}$. From (3.11), for any $\delta_2 \leq \tau_3$, $|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_8 |x - \bar{x}|^{\delta_2}$, where $M_8 = \max\{M_5, \frac{M_3 \beta}{1 - \Theta}\}$. Now, the last inequality together with Lemma 3.2 gives $f_1 \in \text{Lip}\delta$ with $\delta = \delta_2$.

III. $\Omega > 1$ and $\Gamma < 1$: $|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 |x - \bar{x}|^{\tau_1} + \frac{M_9 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \leq M_9 |x - \bar{x}|^{\delta_3}$, where $M_9 = \max\{M_5, \frac{M_3 \beta}{1 - \Theta}\}$ and $\delta_3 = \min(\tau_1, \mu)$. Thus, as $n \to \infty$, the last inequality together with Lemma 3.2 gives $f_1 \in \text{Lip}\delta$ with $\delta = \delta_3$.

IV. $\Omega < 1$ and $\Gamma > 1$: $|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq \frac{M_7 \beta}{1 - \Theta} |x - \bar{x}|^{\lambda} + \frac{M_7 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \leq M_{10} |x - \bar{x}|^{\delta_4}$, where $M_{10} = \max\{\frac{M_7 \beta}{1 - \Theta}, \frac{M_7 \beta}{1 - \Theta}\}$ and $\delta_4 = \min(\lambda, \tau_2)$. So, as $n \to \infty$, the above inequality together with Lemma 3.2 gives $f_1 \in \text{Lip}\delta$ with $\delta = \delta_4$.

Case (b). $\Omega = 1$ or $\Gamma = 1$: The desired Hölder exponents are found individually for each of the following subcases:

I. $\Omega = 1$ and $\Gamma \leq 1$ or $\Omega < 1$ and $\Gamma = 1$: For $\Omega = 1$ and $\Gamma = 1$,

$$|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq \left(M_5 |x - \bar{x}|^{\lambda} + \frac{M_6 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \right) \cdot (m - 1)$$

$$\leq \left(M_5 |x - \bar{x}|^{\lambda} + \frac{M_6 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \right) \log |x - \bar{x}|$$

$$\leq M_{11} \left(\log |x - \bar{x}| \right) |x - \bar{x}|^{\delta_1},$$

where $M_{11} = \frac{M_5 \log |t|_{\text{max}}}{\log |t|_{\text{max}}}$. As $n \to \infty$, the last inequality together with Lemma 3.2 gives $\omega(f_1, t) = O(|t|^\delta \log |t|)$ with $\delta = \delta_1$. For $\Omega = 1$ and $\Gamma < 1$,

$$|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq \frac{M_5 \log |t|_{\text{max}}}{\log |t|_{\text{max}}} |x - \bar{x}|^{\lambda} \log |x - \bar{x}| + \frac{M_6 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \leq M_{12} |x - \bar{x}|^{\delta_1} \left(1 + \log |x - \bar{x}| \right),$$

where $M_{12} = \max\{\log |t|_{\text{max}}, \frac{M_7 \beta}{1 - \Theta} \}$. Hence, as $n \to \infty$, the above inequality together with Lemma 3.2 gives $\omega(f_1, t) = O(|t|^\delta \log |t|)$ with $\delta = \delta_1$. The estimate for $\Omega < 1$ and $\Gamma = 1$ follows using analogous arguments.

II. $\Omega > 1$ and $\Gamma = 1$: For $\Omega > 1$ and $\Gamma = 1$,

$$|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 |x - \bar{x}|^{\tau_1} + \frac{M_6 \beta}{1 - \Theta} |x - \bar{x}|^{\mu} \log |x - \bar{x}| \leq M_{13} |x - \bar{x}|^{\delta_4} \left(1 + \log |x - \bar{x}| \right),$$

where $M_{13} = \max\{M_5, \frac{M_7 \beta}{1 - \Theta} \}$. Making $n \to \infty$, the above inequality together with Lemma 3.2 gives $\omega(f_1, t) = O(|t|^\delta \log |t|)$ with $\delta = \delta_4$. Theorem 3.1 now follows from the above cases with suitable δ as found in various subcases.

The smoothness results for the class of CHFIFs when $\Theta = 1$ are given by the following:

Theorem 3.2. Let $f_1(x)$ be the CHFIF defined by (3.2) with $\Theta = 1$. Then, (a) for $\Omega \neq 1$ and $\Gamma \neq 1$, $\omega(f_1, t) = O(|t|^\delta \log |t|)$ (b) for $\Omega = 1$ or $\Gamma = 1$, $\omega(f_1, t) = O(|t|^\delta (\log |t|)^2)$, for suitable values of $\delta \in (0, 1]$.

Proof. Since $\Theta = 1$, (3.9) gives,

$$|Q_n(f_1, x) - Q_n(f_1, \bar{x})| \leq M_5 |x - \bar{x}|^{\lambda} \left(\sum_{k=2}^{m} \Omega^{m-k} \right) + \frac{M_6 \beta}{\log |t|_{\text{max}}} |x - \bar{x}|^{\mu} \log |x - \bar{x}| \left(\sum_{k=1}^{m-3} \Gamma^{k} \right) \quad (3.13)$$

The rest of proof is similar to that of Theorem 3.1 with the respective values of δ as in different cases of Theorem 3.1.

Finally, the smoothness results for the class of CHFIFs for $\Theta > 1$ are given by the following:

Theorem 3.3. Let $f_1(x)$ be the CHFIF defined by (3.2) with $\Theta > 1$. Then, (a) for $\Omega \neq 1$ and $\Gamma \neq 1$, $f_1 \in \text{Lip}\delta$ (b) for $\Omega = 1$ or $\Gamma = 1$, $\omega(f_1, t) = O(|t|^\delta \log |t|)$, for suitable values of $\delta \in (0, 1]$.

IJNS email for contribution: editor@nonlinearscience.org.uk
Hence, function $\Theta = 1$.

Let $\tau_4 > 0$ be such that $|x - \bar{x}|^\mu \ m \Theta^m \leq |x - \bar{x}|^{\tau_4}$. Then,

$$\tau_4 \leq \mu + \frac{m \log \Theta}{\log |x - \bar{x}|} \leq \frac{\log \alpha}{\log |f|_{\text{min}}}. $$

Since τ_1 in Theorem 3.1 satisfies $\tau_1 \leq \frac{\log \alpha}{\log |f|_{\text{min}}}$, we can choose $\tau_4 = \tau_1$ so that (3.14) reduces to

$$|Q_n(f_1, x) - Q_n(\bar{x}, \bar{x})| \leq M_5 |x - \bar{x}|^\lambda (\sum_{k=2}^{m} \Omega^{m-k}) + M_6 \beta |x - \bar{x}|^\mu \cdot m \Theta^m \cdot (\sum_{k=1}^{m-3} \Gamma^k). $$

The rest of the proof is similar to that of Theorem 3.1, by considering (3.15) in place of (3.10). As in Theorem 3.1, the value of δ in different cases are given by Case (a): I. $\delta = \delta_6 = \min(\lambda, \gamma_1)$, II. $\delta = \delta_6$ where $\delta_6 \leq \frac{\log \alpha}{\log |f|_{\text{min}}} - \mu$, III. $\delta = \delta_7$ where $\delta_7 \leq \frac{\log \alpha}{\log |f|_{\text{min}}}$, IV. $\delta = \delta_8 = \min(\lambda, \delta_6)$, and Case (b): I. $\delta = \delta_5$, II. $\delta = \delta_7$, III. $\delta = \delta_8$.

Remark 3.1. 1. It follows from Theorems 3.1-3.3, that the smoothness of the CHFIF depends on the free variables α_i, γ_1, and the Lipschitz exponents λ_i and μ_i but independent of the constrained free variables β_i.

2. Let $\lambda = \mu$ and $\Theta < 1$. Then, $\Omega < 1$. Theorem 3.1 now gives the following smoothness results depending on the magnitude of Γ for CHFIF $f_1(x)$. (A) For $\Gamma < 1$, $f_1(x) \in \text{Lip}_2$, since $\delta_1 = \mu$ in this case. (B) For $\Gamma = 1$, $\omega(f_1, t) = \circ(|t|^{\mu}(\log |t|)^2)$, since $\delta_1 = \mu$ in this case. (C) For $\Gamma > 1$, $f_1 \in \text{Lip}_{\Gamma_2}$, where $\tau_2 \leq \frac{\log \gamma}{\log |f|_{\text{min}}}$, since $\delta_4 = \min(\lambda, \tau_2)$.

3. Suppose $\lambda = \mu$ and $\Theta = 1$. Then, $\Omega = 1$. Theorem 3.2 in this case gives the smoothness result as follows: (A) For $\Gamma < 1$, $\omega(f_1, t) = \circ(|t|^{\mu}(\log |t|)^2)$, since $\delta_1 = \mu$ in this case. (B) For $\Gamma = 1$, $\omega(f_1, t) = \circ(|t|^{\mu}(\log |t|)^2)$, since $\delta_1 = \mu$ in this case. (C) For $\Gamma > 1$, $\omega(f_1, t) = \circ(|t|^{\delta_1}(\log |t|)^2)$, where $\delta_1 = \min(\lambda, \tau_2)$.

4. Let $\lambda = \mu$ and $\Theta > 1$. Then, $\Theta = \max\{\alpha_i, i = 1, \ldots, N\} > 1$ which in turn implies $\frac{\log \alpha}{\log |f|_{\text{min}}} < \mu$. Since $\delta_6 \leq \frac{\log \gamma}{\log |f|_{\text{min}}} + (\frac{\log \alpha}{\log |f|_{\text{min}}} - \mu) \leq \frac{\log \gamma}{\log |f|_{\text{min}}}$ and $\tau_2 \leq \frac{\log \gamma}{\log |f|_{\text{min}}}$, we may choose $\delta_6 \leq \tau_2$. Further, $\tau_1 \leq \frac{\log \alpha}{\log |f|_{\text{min}}}$ implies $\tau_1 < \mu$. With these inequalities, the smoothness results as derived from Theorem 3.3 in the case $\lambda = \mu$ and $\Theta = 1$ are as follows: (A) For $\Gamma < 1$, $f_1 \in \text{Lip}_2 \supset \text{Lip}_1$. (B) For $\Gamma = 1$, $\omega(f_1, t) = \circ(|t|^{\delta_1}(\log |t|)^4)$ which gives $\omega(f_1, t) = \circ(|t|^{\delta_1}(\log |t|)^2)$. (C) For $\Gamma > 1$, $f_1 \in \text{Lip}_{\delta_2} \supset \text{Lip}_2$.

5. If $f_1(x) = f_2(x)$, then $f_1(x)$ is also self-affine and in such case, $y_i = z_i$, $\alpha_i + \beta_i = \gamma_i$, and $p_i(x) = q_i(x)$. Hence, $\lambda_i = \mu_i \Rightarrow \lambda = \mu \Rightarrow \delta_1 = \mu$ and $\Omega = \Theta$. For self-affine function $f_1(x) = f_2(x)$, f_1 belongs to the intersection of the function spaces occurring for the same case (A), (B), or (C) of Remarks 3-5 as above. We note the intersection of these function spaces is independent of Θ. Since, the class of CHFIFs for $\Theta < 1$ is contained in the class of CHFIFs for $\Theta = 1$ and $\Theta > 1$, the smoothness results in [20] for self-affine function $f_2(x)$ follows as special case of our smoothness results derived in the above Remarks 2-4.

4 Fractal dimension of CHFIF

The following definitions are needed in the sequel: The conditions $\Omega = 1$, $\Gamma = 1$, or $\Theta = 1$ are called critical conditions. The CHFIF $f_1(x)$ with any one of these condition is called critical CHFIF. Let $\mathcal{N}(A, \epsilon)$ be the smallest number of closed balls of radius $\epsilon > 0$, needed to cover A. Then, the Fractal dimension of A is defined by $D_B(A) = \lim_{\epsilon \to 0} \frac{\log \mathcal{N}(A, \epsilon)}{-\log \epsilon}$, whenever the limit exists. Our following theorems give bounds on the fractal dimension for the critical CHFIFs where the range or oscillation of f_1 is taken over an interval.

Theorem 4.1. Let fractal dimension of CHFIF $f_1(x)$, defined by (3.2) exists. Then, for the critical condition $\Omega = 1$,

$$1 - \frac{\log \sum_{k=1}^{N} |\alpha_k|}{\log |f|_{\text{max}}} \leq D_B(\text{graph}(f_1)) \leq 1 - \delta - \frac{\log N}{\log |f|_{\text{max}}},$$

IINS homepage: http://www.nonlinearscience.org.uk/
and for the critical condition $\Gamma = 1$,

$$1 - \frac{\log \sum_{k=1}^{N} |\gamma_k|}{\log |I_{\text{max}}|} \leq D_{B}(\text{graph}(f_1)) \leq 1 - \delta - \frac{\log N}{\log |I_{\text{max}}|},$$

(4.2)

where δ takes suitable values as in the subcases in Theorems 3.1-3.3.

Proof. Let $\Theta < 1$ and $\Omega = 1$. Since $\omega(f_1, t) = \bigcirc([t]^{\delta_1} \log |t|)$, (cf. Theorem 3.1), for all $x \neq x^$, $x, x^ \in I$, there exist constants C_1, C_2 such that

$$C_1|x - x^|^\delta_1 \leq |f_1(x) - f_1(x^)| \leq C_2|x - x^|^\delta_1 \log |x - x^|.$$

(4.3)

Suppose, $G_{r_1, r_2, \ldots, r_m} = \{(x, f_1(x), f_2(x)) \mid x \in I_{r_1, r_2, \ldots, r_m} \}$. Define, $|A|_X = \sup\{|x - \bar{x}| \mid (x, y, z), (\bar{x}, \bar{y}, \bar{z}) \in A\}$, $|A|_Y = \sup\{|y - \bar{y}| \mid (x, y, z), (\bar{x}, \bar{y}, \bar{z}) \in A\}$, for any $A \subset \mathbb{R}^3$. Since, $|G_{r_1, r_2, \ldots, r_m}|_X = |I_{r_1, r_2, \ldots, r_m}|$, (4.3) reduces to

$$C_1 |I_{r_1, r_2, \ldots, r_m}|^\delta_1 \leq |G_{r_1, r_2, \ldots, r_m}|_Y \leq C_2 |I_{r_1, r_2, \ldots, r_m}|^\delta_1 \log |I_{r_1, r_2, \ldots, r_m}|.$$

(4.4)

Choose m large such that $|I_{\text{max}}|^m \leq \frac{1}{2} \epsilon$, $\epsilon > 0$. Since, $|\Omega_{r_j}| \leq \Omega = 1$ implies $|\alpha_{r_j}| \leq |I_{r_j}|^\lambda \leq |I_{r_j}|^\delta_1$ and $|I_{r_1, r_2, \ldots, r_m}| = |I_{r_1}| \cdot |I_{r_2}| \ldots |I_{r_m}|$, it follows by (4.4) that

$$C_1 |\alpha_{r_1}| \cdot |\alpha_{r_2}| \ldots |\alpha_{r_m}| \leq |G_{r_1, r_2, \ldots, r_m}|_Y \leq C_2 |I_{\text{max}}|^m \delta_1 \cdot m \log |I_{\text{max}}|.$$

(4.5)

Taking summation over r_1, r_2, \ldots, r_m from 1 to N in (4.5),

$$\sum_{r_1, r_2, \ldots, r_m} C_1 |\alpha_{r_1}| \cdot |\alpha_{r_2}| \ldots |\alpha_{r_m}| |I_{\text{max}}|^{-m} \leq \sum_{r_1, r_2, \ldots, r_m} |G_{r_1, r_2, \ldots, r_m}|_Y |I_{\text{max}}|^{-m} \leq \sum_{r_1, r_2, \ldots, r_m} C_2 |I_{\text{max}}|^m \delta_1 \cdot m \log |I_{\text{max}}|.$$

The above inequalities can be rewritten as

$$\tilde{C}_1 |I_{\text{max}}|^{-m} (|\alpha_1| + \ldots |\alpha_N|)^m \leq \mathcal{N}(\text{graph}(f_1), \epsilon) \leq \tilde{C}_2 |I_{\text{max}}|^m (\delta_1 - 1) \cdot m \log |I_{\text{max}}| \cdot N^m.$$

The inequalities (4.1) follow from the last inequalities with $\delta = \delta_1$. The proof of (4.2) for $\Theta < 1, \Gamma = 1$ is similar to the above case.

Let $\Theta = 1$ and $\Omega = 1$. Since $\omega(f_1, t) = \bigcirc([t]^{\delta_1} (\log |t|)^2)$ (cf. Theorem 3.2), for all $x \neq x^, x, x^ \in I$, there exist constants C_3, C_4 such that

$$C_3|x - x^|^\delta_1 \leq |f_1(x) - f_1(x^)| \leq C_4|x - x^|^\delta_1 (\log |x - x^|)^2.$$

(4.6)

Now, using (4.6) in place of (4.3) the above arguments give that there are constants \tilde{C}_3 and \tilde{C}_4 such that

$$\tilde{C}_3 |I_{\text{max}}|^{-m} (|\alpha_1| + \ldots |\alpha_N|)^m \leq \mathcal{N}(\text{graph}(f_1), \epsilon) \leq \tilde{C}_4 |I_{\text{max}}|^m (\delta_1 - 1) \cdot (m \log |I_{\text{max}}|)^2 \cdot N^m.$$

The proof of (4.1) for $\Theta = 1$ and $\Omega = 1$ follows from the above inequalities with $\delta = \delta_1$.

The proof of (4.1)-(4.2) is analogous in other cases.

Theorem 4.2. Let fractal dimension of CHFIF $f_1(x)$, defined by (3.2) exists with $\Theta = 1$. Then, for $\Omega \neq 1$ or $\Gamma \neq 1$,

$$1 - \frac{\log \sum_{k=1}^{N} |\gamma_k|}{\log |I_{\text{max}}|} \leq D_{B}(\text{graph}(f_1)) \leq 1 - \delta - \frac{\log N}{\log |I_{\text{max}}|},$$

where δ takes suitable values as in Theorem 3.2.

Proof. The proof is similar to the case $\Theta < 1$ of Theorem 4.1.
Theorems 4.1-4.2 lead to the following bounds on fractal dimension of equally spaced critical CHFIFs.

Corollary 4.1. Let fractal dimension of CHFIF \(f_1(x) \), defined by (3.2) exists. Then, for \(\Theta = 1 \) or \(\Omega = 1 \),

\[
\log \frac{\sum_{k=1}^{N} |\alpha_k|}{\log N} + 1 \leq D_B(\text{graph}(f_1)) \leq 2 - \delta. \tag{4.7}
\]

Further, for \(\Gamma = 1 \),

\[
\log \frac{\sum_{k=1}^{N} |\gamma_k|}{\log N} + 1 \leq D_B(\text{graph}(f_1)) \leq 2 - \delta, \tag{4.8}
\]

where \(\delta \) takes suitable values as in Theorems 3.1-3.3.

Corollary 4.2. Let the equidistant CHFIF \(f_1(x) \) be defined by (3.2). Then, \(D_B(\text{graph}(f_1)) = 1 \) in the following cases:

1. \(\Theta \leq 1 \), either \(\delta = \delta_1 = 1 \) or \(\delta = \delta_3 = 1 \) and either \(\sum_{k=1}^{N} |\alpha_k| \leq 1 \) or \(\sum_{k=1}^{N} |\gamma_k| \leq 1 \).

2. \(\Theta \leq 1 \), \(\delta = \delta_4 = 1 \), with \(\sum_{k=1}^{N} |\alpha_k| \leq 1 \) and for \(\Theta = 1 \), \(\delta = \delta_2 = \tau_3 = 1 \) with \(\sum_{k=1}^{N} |\alpha_k| \leq 1 \).

3. \(\Theta > 1 \), either \(\delta = \delta_5 = 1 \) or \(\delta = \delta_8 = 1 \) with \(\sum_{k=1}^{N} |\alpha_k| \leq 1 \) and \(\delta = \delta_4 = 1 \) with \(\sum_{k=1}^{N} |\gamma_k| \leq 1 \).

Remark 4.1. 1. In the critical case \(\Gamma = 1 \), the fractal dimension bounds of CHFIF \(f_1(x) \) found in (4.2) coincide with the fractal dimension bounds of FIF \(f_2(x) \) found in [20], if \(f_1(x) \) is also self-affine.

2. In Corollary 4.2, critical CHFIF \(f_1(x) \) is considered as fractal function, since \(f_1(x) \) satisfies \(\omega(f_1, x) = \Theta(x^\delta \log |x|) \). Consequently, fractal functions having \(D_B(\text{graph}(f_1)) = 1 \) can be constructed by using this corollary.

5 Conclusion

In the present paper, we prove that the smoothness of CHFIF \(f_1(x) \) depends on free variables \(\alpha_i \) and \(\gamma_i \) as well as on the smoothness of \(p_i(x) \) and \(q_i(x) \). Although, \(z_i \) and \(\beta_i \) are responsible for the shape of the CHFIF, these are found not to affect its smoothness. In general, the deterministic construction of functions \(f_1 \) having order of modulus of continuity \(\omega(f_1, t) = O(|t|^\delta (\log |t|)^m) \) is possible through the CHFIF, where \(m \) is a non-negative integer and \(0 < \delta \leq 1 \). The fact that CHFIFs are different in shape although they are in the same function spaces may enable considering them in more general function spaces such as Besov and Triebel-Lizorkin spaces apart from Lipschitz spaces. These former spaces have additional indices that ‘fine-tune’ a function. Finally, the bounds of fractal dimension of CHFIFs are found in different critical conditions.

Acknowledgment

The present work was partially supported by the CSIR, India, Grant No: 9/92(160)/98-EMR-I.

References

IJNS homepage: http://www.nonlinearscience.org.uk/

